Numerical computation of eigenvalues of discontinuous Sturm–Liouville problems with parameter dependent boundary conditions using sinc method

In this paper, we consider a Sturm–Liouville problem which contains an eigenparameter appearing linearly in two boundary conditions, in addition to an internal point of discontinuity. Eigenvalue problems with eigenparameter appearing in the boundary conditions usually have complicated characteristic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 63; číslo 1; s. 27 - 48
Hlavní autoři: Tharwat, M. M., Bhrawy, A. H., Yildirim, Ahmet
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.05.2013
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider a Sturm–Liouville problem which contains an eigenparameter appearing linearly in two boundary conditions, in addition to an internal point of discontinuity. Eigenvalue problems with eigenparameter appearing in the boundary conditions usually have complicated characteristic determinant where zeros cannot be explicitly computed. We apply the sinc method, which is based on the sampling theory to compute approximations of the eigenvalues. An error analysis is exhibited involving rigorous error bounds. Using computable error bounds we obtain eigenvalue enclosures in a simple way. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-012-9609-3