Sensor-Based Abnormal Human-Activity Detection

With the availability of affordable sensors and sensor networks, sensor-based human activity recognition has attracted much attention in artificial intelligence and ubiquitous computing. In this paper, we present a novel two-phase approach for detecting abnormal activities based on wireless sensors...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 20; no. 8; pp. 1082 - 1090
Main Authors: Jie Yin, Qiang Yang, Pan, J.J.
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the availability of affordable sensors and sensor networks, sensor-based human activity recognition has attracted much attention in artificial intelligence and ubiquitous computing. In this paper, we present a novel two-phase approach for detecting abnormal activities based on wireless sensors attached to a human body. Detecting abnormal activities is a particular important task in security monitoring and healthcare applications of sensor networks, among many others. Traditional approaches to this problem suffer from a high false positive rate, particularly when the collected sensor data are biased towards normal data while the abnormal events are rare. Therefore, there is a lack of training data for many traditional data mining methods to be applied. To solve this problem, our approach first employs a one-class support vector machine (SVM) that is trained on commonly available normal activities, which filters out the activities that have a very high probability of being normal. We then derive abnormal activity models from a general normal model via a kernel nonlinear regression (KNLR) to reduce false positive rate in an unsupervised manner. We show that our approach provides a good tradeoff between abnormality detection rate and false alarm rate, and allows abnormal activity models to be automatically derived without the need to explicitly label the abnormal training data, which are scarce. We demonstrate the effectiveness of our approach using real data collected from a sensor network that is deployed in a realistic setting.
AbstractList With the availability of affordable sensors and sensor networks, sensor-based human activity recognition has attracted much attention in artificial intelligence and ubiquitous computing. In this paper, we present a novel two-phase approach for detecting abnormal activities based on wireless sensors attached to a human body. Detecting abnormal activities is a particular important task in security monitoring and healthcare applications of sensor networks, among many others. Traditional approaches to this problem suffer from a high false positive rate, particularly when the collected sensor data are biased towards normal data while the abnormal events are rare. Therefore, there is a lack of training data for many traditional data mining methods to be applied. To solve this problem, our approach first employs a one-class support vector machine (SVM) that is trained on commonly available normal activities, which filters out the activities that have a very high probability of being normal. We then derive abnormal activity models from a general normal model via a kernel nonlinear regression (KNLR) to reduce false positive rate in an unsupervised manner. We show that our approach provides a good tradeoff between abnormality detection rate and false alarm rate, and allows abnormal activity models to be automatically derived without the need to explicitly label the abnormal training data, which are scarce. We demonstrate the effectiveness of our approach using real data collected from a sensor network that is deployed in a realistic setting.
Traditional approaches to this problem suffer from a high false positive rate, particularly when the collected sensor data are biased towards normal data while the abnormal events are rare. [...] there is a lack of training data for many traditional data mining methods to be applied.
Author Pan, J.J.
Jie Yin
Qiang Yang
Author_xml – sequence: 1
  surname: Jie Yin
  fullname: Jie Yin
  organization: Inf. & Commun. Technol. (ICT) Centre, Commonwealth Sci. & Ind. Res. Organ., Hobart, TAS
– sequence: 2
  surname: Qiang Yang
  fullname: Qiang Yang
  organization: Inf. & Commun. Technol. (ICT) Centre, Commonwealth Sci. & Ind. Res. Organ., Hobart, TAS
– sequence: 3
  givenname: J.J.
  surname: Pan
  fullname: Pan, J.J.
BookMark eNp9kD1PwzAQhi1UJNrCysJSMcCUcGc7Hx5LWyiiEgNlthznKqVKk2InSP33JCpiqATTvcPz3umeERtUdUWMXSOEiKAe1q_zRcgBkhBB8jM2xChKA44KB10GiYEUMrlgI--3AJAmKQ5Z-E6Vr13waDzlk2lW1W5nysmy3ZkqmNqm-Cqaw2RODXW5ri7Z-caUnq5-5ph9PC3Ws2Wwent-mU1XgRVSNQFyk0vLgUuITI4ZGsANJ0GbWFlUlBFkhjJjKY8hEyDjRMZc8jzhsUlyK8bs_rh37-rPlnyjd4W3VJamorr1Ok0iSGNMVUfe_UsKGSuMVdqBtyfgtm5d1X2hFXIBgkc9FB4h62rvHW303hU74w4aQfeWdW9Z95Z1b7kryJOCLRrTq2qcKcq_azfHWkFEvzekiLqPpPgG1VCJOg
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TSMCC_2012_2215319
crossref_primary_10_3390_bioengineering11040345
crossref_primary_10_3390_s20144016
crossref_primary_10_3390_s131114918
crossref_primary_10_1016_j_pmcj_2016_07_004
crossref_primary_10_1016_j_robot_2019_02_005
crossref_primary_10_1016_j_eswa_2018_07_068
crossref_primary_10_1016_j_iot_2024_101068
crossref_primary_10_4316_AECE_2019_01005
crossref_primary_10_3390_s18061965
crossref_primary_10_3390_s91108422
crossref_primary_10_3390_computers5040022
crossref_primary_10_1016_j_bspc_2021_102406
crossref_primary_10_1007_s10916_016_0497_2
crossref_primary_10_1109_JIOT_2019_2946359
crossref_primary_10_1109_JPROC_2013_2262913
crossref_primary_10_1109_TKDE_2012_246
crossref_primary_10_1007_s11760_015_0756_6
crossref_primary_10_1080_20476965_2019_1710582
crossref_primary_10_1007_s10015_011_0872_5
crossref_primary_10_1007_s12083_016_0428_5
crossref_primary_10_1007_s42486_022_00108_3
crossref_primary_10_3390_rs11010055
crossref_primary_10_1007_s10844_014_0341_4
crossref_primary_10_1109_TASE_2015_2471842
crossref_primary_10_1016_j_future_2020_10_030
crossref_primary_10_1109_TSMCB_2012_2216873
crossref_primary_10_1007_s12065_020_00484_8
crossref_primary_10_1109_JSEN_2017_2707921
crossref_primary_10_1007_s10489_022_03897_3
crossref_primary_10_1016_j_iot_2019_01_002
crossref_primary_10_1587_transinf_E94_D_1153
crossref_primary_10_1016_j_im_2024_103922
crossref_primary_10_1109_JSEN_2021_3128046
crossref_primary_10_1002_smtd_202500379
crossref_primary_10_1109_JSEN_2013_2271721
crossref_primary_10_1155_2013_254629
crossref_primary_10_1007_s11042_015_2453_4
crossref_primary_10_32604_cmc_2021_018719
crossref_primary_10_1016_j_eswa_2010_07_120
crossref_primary_10_1109_ACCESS_2018_2846779
crossref_primary_10_1109_TASE_2015_2474743
crossref_primary_10_1109_TITB_2012_2226905
crossref_primary_10_1038_s41467_020_15086_2
crossref_primary_10_1016_j_engappai_2019_08_020
crossref_primary_10_3390_s16060822
crossref_primary_10_3390_s21165270
crossref_primary_10_1016_j_knosys_2021_106970
crossref_primary_10_1109_TKDE_2019_2905207
crossref_primary_10_1016_j_suscom_2020_100453
crossref_primary_10_1109_TPAMI_2018_2874455
crossref_primary_10_1016_j_neucom_2025_129576
crossref_primary_10_1080_1206212X_2024_2426501
crossref_primary_10_3233_JIFS_212088
crossref_primary_10_1109_JBHI_2020_3013403
crossref_primary_10_1109_TITS_2016_2617200
crossref_primary_10_1109_JIOT_2023_3285714
crossref_primary_10_1007_s11042_016_3267_8
crossref_primary_10_1109_ACCESS_2023_3264443
crossref_primary_10_1016_j_measurement_2022_111084
crossref_primary_10_1016_j_comnet_2010_05_003
crossref_primary_10_1016_j_jnca_2019_02_029
crossref_primary_10_1016_j_compbiomed_2019_103520
crossref_primary_10_3390_s20143811
crossref_primary_10_1016_j_dcan_2015_02_006
crossref_primary_10_1109_JTEHM_2015_2480082
crossref_primary_10_1016_j_measurement_2020_108050
crossref_primary_10_1007_s12559_020_09740_6
crossref_primary_10_1109_JBHI_2020_3007488
crossref_primary_10_1109_COMST_2019_2948204
crossref_primary_10_1177_1059712320930420
crossref_primary_10_3390_s23031275
crossref_primary_10_1038_s41467_020_19424_2
crossref_primary_10_1145_3038917
crossref_primary_10_1371_journal_pone_0168069
crossref_primary_10_1016_j_measen_2023_100925
crossref_primary_10_3390_app12031021
crossref_primary_10_1109_TCSVT_2021_3134410
crossref_primary_10_1007_s11227_021_03921_2
crossref_primary_10_1016_j_jvcir_2023_103901
crossref_primary_10_1109_SURV_2012_110112_00192
crossref_primary_10_1109_JIOT_2020_3019270
crossref_primary_10_3390_e17031358
crossref_primary_10_3390_robotics9030055
crossref_primary_10_1109_JSEN_2020_3004411
crossref_primary_10_1109_JSYST_2018_2876461
crossref_primary_10_3390_s16101713
crossref_primary_10_1016_j_robot_2013_05_010
crossref_primary_10_1155_2022_7931729
crossref_primary_10_1109_ACCESS_2020_2991731
crossref_primary_10_1109_TSMCC_2011_2178594
crossref_primary_10_1016_j_pmcj_2011_06_004
crossref_primary_10_1007_s41050_021_00028_8
crossref_primary_10_1016_j_jpdc_2017_11_018
crossref_primary_10_1109_ACCESS_2020_3011654
crossref_primary_10_1016_j_knosys_2015_09_024
crossref_primary_10_1109_TSMCC_2012_2198883
crossref_primary_10_1007_s12652_018_0855_7
crossref_primary_10_1007_s00779_011_0465_2
crossref_primary_10_1016_j_eswa_2024_124339
crossref_primary_10_1109_ACCESS_2019_2921912
crossref_primary_10_1155_2018_9032945
crossref_primary_10_1109_JIOT_2022_3211889
crossref_primary_10_1016_j_medengphy_2016_10_014
crossref_primary_10_1109_TKDE_2018_2806975
crossref_primary_10_3390_mi6081100
crossref_primary_10_1007_s00138_022_01291_0
crossref_primary_10_1007_s12652_014_0246_7
crossref_primary_10_3390_s19040907
crossref_primary_10_1016_j_asoc_2022_109363
crossref_primary_10_1007_s00521_022_07665_9
crossref_primary_10_1109_ACCESS_2017_2771389
crossref_primary_10_1016_j_eswa_2018_09_021
crossref_primary_10_1109_MPRV_2019_2913933
crossref_primary_10_1109_JIOT_2018_2863039
crossref_primary_10_1016_j_neucom_2015_09_064
crossref_primary_10_1186_s12938_024_01213_3
crossref_primary_10_3390_s21041276
crossref_primary_10_1109_TIFS_2023_3300094
crossref_primary_10_1109_TKDE_2010_148
crossref_primary_10_1016_j_pmcj_2014_02_003
crossref_primary_10_1109_JIOT_2020_3042502
crossref_primary_10_1007_s12652_020_02229_y
crossref_primary_10_1016_j_jnca_2020_102738
crossref_primary_10_1109_TMC_2021_3064252
crossref_primary_10_1007_s12652_014_0219_x
crossref_primary_10_1002_dac_4348
crossref_primary_10_1109_TMM_2016_2597007
crossref_primary_10_3390_bios11080284
crossref_primary_10_1109_TKDE_2013_33
crossref_primary_10_1007_s12652_012_0122_2
crossref_primary_10_1016_j_adhoc_2012_06_013
crossref_primary_10_1145_2934666
crossref_primary_10_1109_JIOT_2023_3243476
crossref_primary_10_1155_2014_283197
crossref_primary_10_3390_s22031016
crossref_primary_10_3390_sym9100212
crossref_primary_10_1587_transinf_2016DAP0014
crossref_primary_10_1145_3687125
crossref_primary_10_1109_TNSE_2019_2958892
crossref_primary_10_1016_j_neucom_2016_08_156
crossref_primary_10_1155_2014_839045
crossref_primary_10_1007_s10115_014_0765_8
crossref_primary_10_3390_app15137508
crossref_primary_10_1016_j_compenvurbsys_2017_09_012
crossref_primary_10_1109_JSEN_2019_2910881
crossref_primary_10_1016_j_neucom_2020_10_102
crossref_primary_10_1109_JIOT_2022_3207090
crossref_primary_10_1007_s00779_014_0820_1
crossref_primary_10_1007_s11063_018_9940_3
crossref_primary_10_1007_s11760_024_03535_0
crossref_primary_10_3390_technologies6040110
crossref_primary_10_3390_s20226670
crossref_primary_10_1016_j_bspc_2022_103963
crossref_primary_10_1016_j_eswa_2018_10_022
crossref_primary_10_1007_s10916_015_0239_x
crossref_primary_10_1145_2633685
crossref_primary_10_1016_j_eswa_2012_09_004
crossref_primary_10_1109_TIM_2015_2477159
crossref_primary_10_3390_electronics10101152
Cites_doi 10.1016/j.artint.2007.01.006
10.1162/089976601750264965
10.1016/S0031-3203(96)00142-2
10.1109/IJCNN.2003.1223670
10.1109/TKDE.2006.84
10.1007/978-3-540-24646-6_2
10.1006/csla.1995.0010
10.1007/3-540-57868-4_79
10.1137/1.9781611972733.3
10.1007/978-3-540-39653-6_6
10.1016/S0167-8655(99)00087-2
10.1109/TKDE.2007.250584
10.1109/icassp.2006.1660191
10.1109/5.18626
10.1145/956750.956758
10.1109/CVPR.2005.61
10.1109/TKDE.2006.131
10.1145/312129.312220
10.1109/ICCV.2005.248
10.1109/MIS.2005.93
10.5555/1642194.1642224
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TKDE.2007.1042
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1090
ExternalDocumentID 2545292731
10_1109_TKDE_2007_1042
4358934
Genre orig-research
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
F28
FR3
ID FETCH-LOGICAL-c349t-12ad4c202405ad1b1a01f2e3ef69c19ebe0baebaced60b3046746242d726a7dc3
IEDL.DBID RIE
ISICitedReferencesCount 251
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256894000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Sep 28 09:01:48 EDT 2025
Sat Sep 27 16:47:47 EDT 2025
Mon Jun 30 04:22:49 EDT 2025
Tue Nov 18 22:27:34 EST 2025
Sat Nov 29 08:10:21 EST 2025
Wed Aug 27 02:52:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Activity Recognition
Data Mining
Outlier Detection
Sensor Networks
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-12ad4c202405ad1b1a01f2e3ef69c19ebe0baebaced60b3046746242d726a7dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 912303258
PQPubID 23500
PageCount 9
ParticipantIDs proquest_journals_912303258
proquest_miscellaneous_875086189
crossref_primary_10_1109_TKDE_2007_1042
proquest_miscellaneous_34691698
ieee_primary_4358934
crossref_citationtrail_10_1109_TKDE_2007_1042
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2008
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref30
ref10
ref2
ref1
ref16
Pollack (ref21) 2005; 26
ref19
ref18
Chan (ref4)
ref24
ref23
ref26
ref20
ref22
Ling (ref17)
ref28
Kukar (ref11)
ref27
Breunig (ref3)
Fumera (ref8)
Jarvis (ref9)
ref29
Yin (ref31)
ref7
Lester (ref14)
ref6
ref5
Ting (ref25)
References_xml – ident: ref15
  doi: 10.1016/j.artint.2007.01.006
– ident: ref23
  doi: 10.1162/089976601750264965
– volume-title: Proc. Workshop Machine Learning, Methods and Applications, held in the Context of the Eighth Meeting of the Italian Assoc. of Artificial Intelligence (AI*IA ’02)
  ident: ref8
  article-title: Cost-Sensitive Learning in Support Vector Machines
– ident: ref2
  doi: 10.1016/S0031-3203(96)00142-2
– start-page: 858
  volume-title: Proc. 19th Nat’l Conf. Artificial Intelligence (AAAI ’04)
  ident: ref9
  article-title: Identifying Terrorist Activity with AI Plan Recognition Technology
– ident: ref19
  doi: 10.1109/IJCNN.2003.1223670
– ident: ref28
  doi: 10.1109/TKDE.2006.84
– start-page: 766
  volume-title: Proc. 19th Int’l Joint Conf. Articial Intelligence (IJCAI ’05)
  ident: ref14
  article-title: A Hybrid Discriminative/Generative Approach for Modeling Human Activities
– ident: ref18
  doi: 10.1007/978-3-540-24646-6_2
– ident: ref13
  doi: 10.1006/csla.1995.0010
– ident: ref10
  doi: 10.1007/3-540-57868-4_79
– start-page: 445
  volume-title: Proc. 13th European Conf. Artificial Intelligence (ECAI ’98)
  ident: ref11
  article-title: Cost-Sensitive Learning with Neural Networks
– ident: ref12
  doi: 10.1137/1.9781611972733.3
– ident: ref20
  doi: 10.1007/978-3-540-39653-6_6
– start-page: 578
  volume-title: Proc. 19th Nat’l Conf. in Artificial Intelligence (AAAI ’04)
  ident: ref31
  article-title: High-Level Goal Recognition in a Wireless LAN
– start-page: 519
  volume-title: Proc. 18th Int’l Joint Conf. Artificial Intelligence (IJCAI ’03)
  ident: ref17
  article-title: AUC: A Statistically Consistent and More Discriminating Measure than Accuracy
– ident: ref24
  doi: 10.1016/S0167-8655(99)00087-2
– start-page: 983
  volume-title: Proc. 17th Int’l Conf. Machine Learning (ICML ’00)
  ident: ref25
  article-title: A Comparative Study of Cost-Sensitive Boosting Algorithms
– volume: 26
  start-page: 9
  issue: 2
  year: 2005
  ident: ref21
  article-title: Intelligent Technology for an Aging Population: The Use of AI to Assist Elders with Cognitive Impairment
  publication-title: AI Magazine
– ident: ref29
  doi: 10.1109/TKDE.2007.250584
– ident: ref26
  doi: 10.1109/icassp.2006.1660191
– ident: ref22
  doi: 10.1109/5.18626
– start-page: 164
  volume-title: Proc. Fourth Int’l Conf. Knowledge Discovery and Data Mining (KDD ’98)
  ident: ref4
  article-title: Toward Scalable Learning with Non-Uniform Class and Cost Distributions
– ident: ref1
  doi: 10.1145/956750.956758
– ident: ref6
  doi: 10.1109/CVPR.2005.61
– ident: ref16
  doi: 10.1109/TKDE.2006.131
– start-page: 93
  volume-title: Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’00)
  ident: ref3
  article-title: Identifying Density-Based Local Outliers
– ident: ref5
  doi: 10.1145/312129.312220
– ident: ref27
  doi: 10.1109/ICCV.2005.248
– ident: ref30
  doi: 10.1109/MIS.2005.93
– ident: ref7
  doi: 10.5555/1642194.1642224
SSID ssj0008781
Score 2.452799
Snippet With the availability of affordable sensors and sensor networks, sensor-based human activity recognition has attracted much attention in artificial...
Traditional approaches to this problem suffer from a high false positive rate, particularly when the collected sensor data are biased towards normal data while...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1082
SubjectTerms Activity Recognition
Artificial intelligence
Communication system security
Data Mining
Data security
Human motion body
Humans
Intelligent sensors
Mathematical models
Monitoring
Networks
Outlier Detection
Regression
Sensor Networks
Sensors
Studies
Support vector machines
Training
Training data
Ubiquitous computing
Wireless sensor networks
Title Sensor-Based Abnormal Human-Activity Detection
URI https://ieeexplore.ieee.org/document/4358934
https://www.proquest.com/docview/912303258
https://www.proquest.com/docview/34691698
https://www.proquest.com/docview/875086189
Volume 20
WOSCitedRecordID wos000256894000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MenG6Kc_7oQfBit6TtmuY43YagDMEJu5U0yUAYrWydf78vaVcU3cFbIQ9aXvryvS95eR_ADYJOOBADjSEuCRIULl3MqrkbyShQC45cTlrVkmc2nUbzOX-pwV11F0ZrbYvPdM882rN8lcmN2SrrI7QjvAZ1qDMWFne1qlU3YlaQFNkFciI_YGWDRkp4f_Y0GhfNCnHU-wFAVlHl1zJssWXS_N9XHcFhmUM6w2LSj6Gm0xY0t_oMThmuLTj41mywDb1XZKzZyr1H3FLOMElNtrp07C6-O5SFioQz0rktzkpP4G0ynj08uqVagiv9gOcu9YQKpGd6lg2EogkVhC487etFyCVFr2uSCJ0IqVVIEnMgygJzOUQxLxRMSf8UGmmW6jNwmBTSF5gpCR0FVCGBTtCKCsUkI8wjHXC3Loxl2UrcKFosY0spCI-Ny43CJYuNyztwW9l_FE00dlq2jYMrq9K3HehuZyguY2wdcwRd4nuDqAPX1SgGhznxEKnONuvYR_JPQ44Wzg4LpGtI6mjEz_9-cxf2iwoRU_J3AY18tdGXsCc_8_f16sr-gl_2uNiN
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50CuqD06k4f60Pgi9WkzZtmsfpJsrmEJywt5ImGQjSyX7493tJu6KoD74VctBy6eW7L7ncB3COoBNHMjIY4oogQRHKx6xa-IlKmB4L5HLKqZb0-WCQjEbiaQUuq7swxhhXfGau7KM7y9cTtbBbZdcI7QivbBXWIsYCUtzWqtbdhDtJUuQXyIpCxssWjZSI62Gv0y3aFeJo8A2CnKbKj4XYoctd_X_ftQPbZRbptYtp34UVkzegvlRo8MqAbcDWl3aDe3D1jJx1MvVvELm0185ym6--eW4f32-rQkfC65i5K8_K9-Hlrju8vfdLvQRfhUzMfRpIzVRgu5ZFUtOMSkLHgQnNOBaKot8NyaTJpDI6Jpk9EuXMXg_RPIgl1yo8gFo-yc0heFxJFUrMlaRJGNVIoTO0olJzxQkPSBP8pQtTVTYTt5oWb6kjFUSk1uVW45Kn1uVNuKjs34s2Gn9a7lkHV1alb5twvJyhtIyyWSoQdkkYREkTWtUohoc985C5mSxmaYj0n8YCLbw_LJCwIa2jiTj6_c0t2LgfPvbT_sOgdwybRb2ILQA8gdp8ujCnsK4-5q-z6Zn7HT8BYQvb1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor-Based+Abnormal+Human-Activity+Detection&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Yin%2C+Jie&rft.au=Yang%2C+Qiang&rft.au=Pan%2C+J.J&rft.date=2008-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=20&rft.issue=8&rft.spage=1082&rft_id=info:doi/10.1109%2FTKDE.2007.1042&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2545292731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon