Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
Convergence analysis is carried out for a forward-backward splitting/generalized gradient projection method for the minimization of a special class of non-smooth and genuinely non-convex minimization problems in infinite-dimensional Hilbert spaces. The functionals under consideration are the sum of...
Saved in:
| Published in: | Journal of optimization theory and applications Vol. 165; no. 1; pp. 78 - 112 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.04.2015
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0022-3239, 1573-2878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Convergence analysis is carried out for a forward-backward splitting/generalized gradient projection method for the minimization of a special class of non-smooth and genuinely non-convex minimization problems in infinite-dimensional Hilbert spaces. The functionals under consideration are the sum of a smooth, possibly non-convex and non-smooth, necessarily non-convex functional. For separable constraints in the sequence space, we show that the generalized gradient projection method amounts to a discontinuous iterative thresholding procedure, which can easily be implemented. In this case we prove strong subsequential convergence and moreover show that the limit satisfies strengthened necessary conditions for a global minimizer, i.e., it avoids a certain set of non-global minimizers. Eventually, the method is applied to problems arising in the recovery of sparse data, where strong convergence of the whole sequence is shown, and numerical tests are presented. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-014-0614-7 |