Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding

Convergence analysis is carried out for a forward-backward splitting/generalized gradient projection method for the minimization of a special class of non-smooth and genuinely non-convex minimization problems in infinite-dimensional Hilbert spaces. The functionals under consideration are the sum of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 165; no. 1; pp. 78 - 112
Main Authors: Bredies, Kristian, Lorenz, Dirk A., Reiterer, Stefan
Format: Journal Article
Language:English
Published: Boston Springer US 01.04.2015
Springer Nature B.V
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Convergence analysis is carried out for a forward-backward splitting/generalized gradient projection method for the minimization of a special class of non-smooth and genuinely non-convex minimization problems in infinite-dimensional Hilbert spaces. The functionals under consideration are the sum of a smooth, possibly non-convex and non-smooth, necessarily non-convex functional. For separable constraints in the sequence space, we show that the generalized gradient projection method amounts to a discontinuous iterative thresholding procedure, which can easily be implemented. In this case we prove strong subsequential convergence and moreover show that the limit satisfies strengthened necessary conditions for a global minimizer, i.e., it avoids a certain set of non-global minimizers. Eventually, the method is applied to problems arising in the recovery of sparse data, where strong convergence of the whole sequence is shown, and numerical tests are presented.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-014-0614-7