Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
Convergence analysis is carried out for a forward-backward splitting/generalized gradient projection method for the minimization of a special class of non-smooth and genuinely non-convex minimization problems in infinite-dimensional Hilbert spaces. The functionals under consideration are the sum of...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 165; číslo 1; s. 78 - 112 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.04.2015
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Convergence analysis is carried out for a forward-backward splitting/generalized gradient projection method for the minimization of a special class of non-smooth and genuinely non-convex minimization problems in infinite-dimensional Hilbert spaces. The functionals under consideration are the sum of a smooth, possibly non-convex and non-smooth, necessarily non-convex functional. For separable constraints in the sequence space, we show that the generalized gradient projection method amounts to a discontinuous iterative thresholding procedure, which can easily be implemented. In this case we prove strong subsequential convergence and moreover show that the limit satisfies strengthened necessary conditions for a global minimizer, i.e., it avoids a certain set of non-global minimizers. Eventually, the method is applied to problems arising in the recovery of sparse data, where strong convergence of the whole sequence is shown, and numerical tests are presented. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-014-0614-7 |