Rough‐fuzzy quadratic minimum spanning tree problem

A quadratic minimum spanning tree problem determines a minimum spanning tree of a network whose edges are associated with linear and quadratic weights. Linear weights represent the edge costs whereas the quadratic weights are the interaction costs between a pair of edges of the graph. In this study,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems Ročník 36; číslo 2
Hlavní autoři: Majumder, Saibal, Kar, Samarjit, Pal, Tandra
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.04.2019
Témata:
ISSN:0266-4720, 1468-0394
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A quadratic minimum spanning tree problem determines a minimum spanning tree of a network whose edges are associated with linear and quadratic weights. Linear weights represent the edge costs whereas the quadratic weights are the interaction costs between a pair of edges of the graph. In this study, a bi‐objective rough‐fuzzy quadratic minimum spanning tree problem has been proposed for a connected graph, where the linear and the quadratic weights are represented as rough‐fuzzy variables. The proposed model is formulated by using rough‐fuzzy chance‐constrained programming technique. Subsequently, three related theorems are also proposed for the crisp transformation of the proposed model. The crisp equivalent models are solved with a classical multi‐objective solution technique, the epsilon‐constraint method and two multi‐objective evolutionary algorithms: (a) nondominated sorting genetic algorithm II (NSGA‐II) and (b) multi‐objective cross‐generational elitist selection, heterogeneous recombination, and cataclysmic mutation (MOCHC) algorithm. A numerical example is provided to illustrate the proposed model when solved with different methodologies. A sensitivity analysis of the example is also performed at different confidence levels. The performance of NSGA‐II and MOCHC are analysed on five randomly generated instances of the proposed model. Finally, a numerical illustration of an application of the proposed model is also presented in this study.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0266-4720
1468-0394
DOI:10.1111/exsy.12364