A multistate joint model for interval‐censored event‐history data subject to within‐unit clustering and informative missingness, with application to neurocysticercosis research

We propose a multistate joint model to analyze interval‐censored event‐history data subject to within‐unit clustering and nonignorable missing data. The model is motivated by a study of the neurocysticercosis (NC) cyst evolution at the cyst‐level, taking into account the multiple cysts phases with i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics in medicine Ročník 39; číslo 23; s. 3195 - 3206
Hlavní autoři: Zhang, Hongbin, Kelvin, Elizabeth A., Carpio, Arturo, Allen Hauser, W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Wiley Subscription Services, Inc 15.10.2020
Témata:
ISSN:0277-6715, 1097-0258, 1097-0258
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a multistate joint model to analyze interval‐censored event‐history data subject to within‐unit clustering and nonignorable missing data. The model is motivated by a study of the neurocysticercosis (NC) cyst evolution at the cyst‐level, taking into account the multiple cysts phases with intermittent missing data and loss to follow‐up, as well as the intra‐brain clustering of observations made on a predefined data collection schedule. Of particular interest in this study is the description of the process leading to cyst resolution, and whether this process varies by antiparasitic treatment. The model uses shared random effects to account for within‐brain correlation and to explain the hidden heterogeneity governing the missing data mechanism. We developed a likelihood‐based method using a Monte Carlo EM algorithm for the inference. The practical utility of the methods is illustrated using data from a randomized controlled trial on the effect of antiparasitic treatment with albendazole on NC cysts among patients from six hospitals in Ecuador. Simulation results demonstrate that the proposed methods perform well in the finite sample and misspecified models that ignore the data complexities could lead to substantial biases.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0277-6715
1097-0258
1097-0258
DOI:10.1002/sim.8663