Sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival and competing risks outcomes

No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics in medicine Ročník 39; číslo 24; s. 3397 - 3411
Hlavní autori: Huang, Rong, Xu, Ronghui, Dulai, Parambir S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Wiley Subscription Services, Inc 30.10.2020
Predmet:
ISSN:0277-6715, 1097-0258, 1097-0258
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time‐to‐event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation‐maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package “survSens” is available on CRAN that implements the proposed methodology.
AbstractList No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time-to-event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation-maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package "survSens" is available on CRAN that implements the proposed methodology.
No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time‐to‐event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation‐maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package “survSens” is available on CRAN that implements the proposed methodology.
No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time-to-event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation-maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package "survSens" is available on CRAN that implements the proposed methodology.No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such as propensity scores and inverse probability weighting. However, in many such studies collection of confounders cannot possibly be exhaustive in practice, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounder approach of Carnegie et al (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the exposure or treatment received, and another set of parameters to quantify the association between the confounder and the time-to-event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic expectation-maximization (EM) and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease. An R package "survSens" is available on CRAN that implements the proposed methodology.
Author Dulai, Parambir S.
Huang, Rong
Xu, Ronghui
Author_xml – sequence: 1
  givenname: Rong
  surname: Huang
  fullname: Huang, Rong
  organization: University of California San Diego
– sequence: 2
  givenname: Ronghui
  orcidid: 0000-0002-2822-0561
  surname: Xu
  fullname: Xu, Ronghui
  email: rxu@health.ucsd.edu
  organization: University of California San Diego
– sequence: 3
  givenname: Parambir S.
  surname: Dulai
  fullname: Dulai, Parambir S.
  organization: University of California San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32677758$$D View this record in MEDLINE/PubMed
BookMark eNp10c1u1DAQB3ALFdFtQeIJkCUuXLLYzoeTI6r4qFTEoXC2HGcMLom9eOyt9gV4bpxuCxKCk6XRb8b2f87IiQ8eCHnO2ZYzJl6jW7Z9J8UjsuFskBUTbX9CNkxIWXWSt6fkDPGGMc5bIZ-Q01p0Usq235Cf1-DRJbd36UC11_MBHdJgaYqg0wI-UbAWTKIp0OwX0JgjTNQEb0P2k_NfqfM0jAhxr5MLZQTFlCcHSG9d-kaL37t9qWq_ti07SGtTdPi9XJRTKQE-JY-tnhGe3Z_n5Mu7t58vPlRXn95fXry5qkzdDKISozZmaqQVluupqYexnoaat2NvWAM176ZWcCtMDaJvLet63pm-5boR2mphRX1OXh3n7mL4kQGTWhwamGftIWRUohHNMAxsYIW-_IvehBzL91bVyJIq6_uiXtyrPC4wqV10i44H9ZBwAdsjMDEgRrDKuHQXVIrazYozta5QlRWqdYV_nvi74WHmP2h1pLduhsN_nbq-_HjnfwHjAq0s
CitedBy_id crossref_primary_10_1186_s12916_025_04199_4
crossref_primary_10_1016_j_clgc_2020_08_009
crossref_primary_10_1245_s10434_021_10524_x
crossref_primary_10_1186_s12874_025_02551_z
crossref_primary_10_1093_jnen_nlad037
crossref_primary_10_6339_22_JDS1046
crossref_primary_10_1080_13607863_2020_1857698
crossref_primary_10_2217_cer_2022_0029
crossref_primary_10_1007_s10985_023_09607_6
crossref_primary_10_3390_math11102317
crossref_primary_10_1001_jamanetworkopen_2025_2152
crossref_primary_10_1016_j_medine_2025_502142
crossref_primary_10_1186_s12874_023_01906_8
crossref_primary_10_2217_cer_2022_0030
crossref_primary_10_3390_a18060346
crossref_primary_10_1007_s10985_023_09590_y
crossref_primary_10_1007_s13253_022_00490_6
crossref_primary_10_1177_09622802241280782
crossref_primary_10_1016_j_prp_2022_153999
crossref_primary_10_1016_j_wneu_2023_02_062
crossref_primary_10_1016_j_medin_2025_502142
crossref_primary_10_1002_sim_10293
crossref_primary_10_1016_j_chest_2024_08_016
Cites_doi 10.1093/aje/kwr096
10.1080/19345747.2015.1078862
10.1007/978-1-4757-3692-2
10.1002/sim.6607
10.1002/bimj.201100042
10.1111/j.2517-6161.1977.tb01600.x
10.1214/14-STS499
10.2307/3318671
10.1038/ajg.2016.236
10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9
10.1038/s41395-018-0162-0
10.1111/j.2517-6161.1972.tb00899.x
10.1002/sim.3516
10.2307/2533848
10.1111/j.2517-6161.1982.tb01203.x
10.1016/j.reprotox.2019.04.002
10.1007/s11121-012-0339-5
10.1016/S0016-5085(18)31547-6
10.1016/S0016-5085(18)30684-X
10.1037/1082-989X.9.4.403
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.8672
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3411
ExternalDocumentID 32677758
10_1002_sim_8672
SIM8672
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: UL1TR001442 of CTSA
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3492-2baccd47f2f1ad439b3d9315b8c04e316d521f2c3e285f06816c851a42afa2f23
IEDL.DBID DRFUL
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000550226800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6715
1097-0258
IngestDate Wed Oct 01 14:48:39 EDT 2025
Tue Oct 28 03:39:47 EDT 2025
Mon Jul 21 05:13:31 EDT 2025
Sat Nov 29 05:32:45 EST 2025
Tue Nov 18 19:53:48 EST 2025
Wed Jan 22 16:32:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords proportional hazards regression
stochastic EM
Cox model
expectation-maximization algorithm
simulated confounder
inverse probability weighting
causal inference
regression adjustment
Language English
License 2020 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3492-2baccd47f2f1ad439b3d9315b8c04e316d521f2c3e285f06816c851a42afa2f23
Notes Funding information
National Institutes of Health, UL1TR001442 of CTSA
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2822-0561
PMID 32677758
PQID 2447715088
PQPubID 48361
PageCount 15
ParticipantIDs proquest_miscellaneous_2424999090
proquest_journals_2447715088
pubmed_primary_32677758
crossref_citationtrail_10_1002_sim_8672
crossref_primary_10_1002_sim_8672
wiley_primary_10_1002_sim_8672_SIM8672
PublicationCentury 2000
PublicationDate 30 October 2020
PublicationDateYYYYMMDD 2020-10-30
PublicationDate_xml – month: 10
  year: 2020
  text: 30 October 2020
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 34
2013; 14
2000; 19
2000; 6
2019; 86
2011
1977; 39
2018; 113
1982; 44
2004; 9
2011; 53
2016; 111
2014; 29
2002
2011; 174
1998; 54
1972; 34
2016; 9
2019; 154
2009; 28
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
Katz JA (e_1_2_7_8_1) 2011
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
Kalbfleisch JD (e_1_2_7_15_1) 2011
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – year: 2011
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 22
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Series B (Methodological)
– volume: 154
  start-page: S369
  issue: 6
  year: 2019
  end-page: S370
  article-title: Comparative effectiveness of vedolizumab and tumor necrosis factor‐antagonist therapy in Crohn's disease: a multicenter consortium propensity score‐matched analysis
  publication-title: Gastroenterology
– volume: 9
  start-page: 403
  issue: 4
  year: 2004
  article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies
  publication-title: Psychol Methods
– volume: 111
  start-page: 1147
  issue: 8
  year: 2016
  article-title: The real‐world effectiveness and safety of vedolizumab for moderate–severe Crohn's disease: results from the US VICTORY consortium
  publication-title: Am J Gastroenterol
– volume: 174
  start-page: 345
  issue: 3
  year: 2011
  end-page: 353
  article-title: Propensity score‐based sensitivity analysis method for uncontrolled confounding
  publication-title: Am J Epidemiol
– volume: 34
  start-page: 3661
  year: 2015
  end-page: 3679
  article-title: Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies
  publication-title: Stat Med
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  end-page: 202
  article-title: Regression models and life‐tables
  publication-title: J R Stat Soc Series B (Methodological)
– volume: 54
  start-page: 948
  year: 1998
  end-page: 963
  article-title: Assessing the sensitivity of regression results to unmeasured confounders in observational studies
  publication-title: Biometrics
– volume: 6
  start-page: 457
  issue: 3
  year: 2000
  end-page: 489
  article-title: The stochastic EM algorithm: estimation and asymptotic results
  publication-title: Bernoulli
– volume: 28
  start-page: 956
  issue: 6
  year: 2009
  end-page: 971
  article-title: Simulating competing risks data in survival analysis
  publication-title: Stat Med
– volume: 29
  start-page: 596
  issue: 4
  year: 2014
  article-title: Nonparametric bounds and sensitivity analysis of treatment effects
  publication-title: Stat Sci
– year: 2002
– volume: 9
  start-page: 395
  issue: 3
  year: 2016
  end-page: 420
  article-title: Assessing sensitivity to unmeasured confounding using a simulated potential confounder
  publication-title: J Res Educ Effect
– volume: 14
  start-page: 570
  issue: 6
  year: 2013
  end-page: 580
  article-title: An introduction to sensitivity analysis for unobserved confounding in nonexperimental prevention research
  publication-title: Prev Sci
– volume: 113
  start-page: 1345
  issue: 9
  year: 2018
  article-title: Vedolizumab for ulcerative colitis: treatment outcomes from the VICTORY Consortium
  publication-title: Am J Gastroenterol
– volume: 53
  start-page: 822
  issue: 5
  year: 2011
  end-page: 837
  article-title: Sensitivity analysis for causal inference using inverse probability weighting
  publication-title: Biom J
– volume: 86
  start-page: 62
  year: 2019
  end-page: 67
  article-title: Statistical sensitivity analysis for the estimation of fetal alcohol spectrum disorders prevalence
  publication-title: Reprod Toxicol
– volume: 154
  start-page: S68
  issue: 6
  year: 2019
  article-title: Comparative safety profile of vedolizumab and tumor necrosis factor‐antagonist therapy for inflammatory bowel disease: a multicenter consortium propensity score‐matched analysis
  publication-title: Gastroenterology
– volume: 44
  start-page: 226
  issue: 2
  year: 1982
  end-page: 233
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Series B (Methodological)
– volume: 19
  start-page: 3309
  issue: 24
  year: 2000
  end-page: 3324
  article-title: Proportional hazards model with random effects
  publication-title: Stat Med
– ident: e_1_2_7_5_1
  doi: 10.1093/aje/kwr096
– ident: e_1_2_7_13_1
  doi: 10.1080/19345747.2015.1078862
– ident: e_1_2_7_2_1
  doi: 10.1007/978-1-4757-3692-2
– ident: e_1_2_7_7_1
  doi: 10.1002/sim.6607
– ident: e_1_2_7_6_1
  doi: 10.1002/bimj.201100042
– volume-title: The Statistical Analysis of Failure Time Data
  year: 2011
  ident: e_1_2_7_15_1
– ident: e_1_2_7_16_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_7_23_1
  doi: 10.1214/14-STS499
– ident: e_1_2_7_19_1
  doi: 10.2307/3318671
– ident: e_1_2_7_10_1
  doi: 10.1038/ajg.2016.236
– ident: e_1_2_7_17_1
  doi: 10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9
– ident: e_1_2_7_9_1
  doi: 10.1038/s41395-018-0162-0
– ident: e_1_2_7_14_1
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_2_7_20_1
  doi: 10.1002/sim.3516
– ident: e_1_2_7_4_1
  doi: 10.2307/2533848
– ident: e_1_2_7_18_1
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– ident: e_1_2_7_22_1
  doi: 10.1016/j.reprotox.2019.04.002
– volume-title: The Facts About Inflammatory Bowel Diseases
  year: 2011
  ident: e_1_2_7_8_1
– ident: e_1_2_7_3_1
  doi: 10.1007/s11121-012-0339-5
– ident: e_1_2_7_12_1
  doi: 10.1016/S0016-5085(18)31547-6
– ident: e_1_2_7_11_1
  doi: 10.1016/S0016-5085(18)30684-X
– ident: e_1_2_7_21_1
  doi: 10.1037/1082-989X.9.4.403
SSID ssj0011527
Score 2.4728615
Snippet No unmeasured confounding is often assumed in estimating treatment effects in observational data, whether using classical regression models or approaches such...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3397
SubjectTerms Algorithms
causal inference
Causality
Confounding Factors, Epidemiologic
Cox model
expectation‐maximization algorithm
Humans
inverse probability weighting
Observational studies
Propensity Score
proportional hazards regression
regression adjustment
Sensitivity analysis
simulated confounder
stochastic EM
Title Sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival and competing risks outcomes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8672
https://www.ncbi.nlm.nih.gov/pubmed/32677758
https://www.proquest.com/docview/2447715088
https://www.proquest.com/docview/2424999090
Volume 39
WOSCitedRecordID wos000550226800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED62dIzC6NZ0a9NlQYXSPbmR5R-SH8e2sEFbSrtC3owkWxBY7VEn_RP6d_cusj1KOyjsKeCcLGPf6b47nb4DOBQOMbYxPOA6SYPYFCpQ6GUCLcK4SLLImmR9UPhEnp2p-Tw7b6sq6SyM54foE25kGev1mgxcm2b6lzS0WVwfq1Ti8rshUG2TAWx8u5hdnfR7CF3DVtqkTGWYdNSzXEy7sQ-d0SOE-RCwrj3O7O3_POs72GpxJvviFWMbXpTVEF6ftjvpQ3jj83XMH0MawiahTk_avAN3l1TW7vtKMN3SlrDasb4snfk6ELas2aq69nnGgmFs7ahNE7pDtqhYbfqULz5K4ysWGWV-GcrfLlDJ8e40jLA7DaJCd5xotcRLZfMermbff339EbQNGwJLJIeBMNraIpYONUAXCHVMVGRRmBhleVxGYVogWHDCRqVQieOpClOLiE_HQjstnIg-wKCqq3IPmMFAJ3W0nCDiM6LMbGKztIhdxi3nTo7gc_flctuymVNTjd-552EWOb7znN75CA56yT-eweMJmXH38fPWhpscgY-URJev8Bb932h9tKWiq7JekYygkJFnfAS7Xmn6SRAYS4nh2AiO1rrxz9nzy5-n9Lv_XMGPsCko7CcXyscwWN6syk_wyt6intxM4KWcq0lrDfdfhg9d
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tS-QwEB5EDxXkTtdT17eLIPqpmqYvablPcuei3O4ip4LfSpI2sHC24u76E_zdzmzaingHB34qtJMmtDOZJ5PJMwCHwiLG1pp7XEWxF-o88RL0Mp4SfphHaWB0NDso3JfDYXJ3l17NwffmLIzjh2gDbmQZs_maDJwC0qevrKHj0f1JEkucfxdC1CJU74Wfv3u3_XYToanYSruUsfSjhnuWi9Om7Vtv9A5ivkWsM5fT-_Khwa7C5xppsjOnGmswV5QdWBzUe-kdWHERO-YOInVgmXCno21eh-drSmx3lSWYqolLWGVZm5jOXCYIm1RsWt67SGPOcHVtqVATOkQ2Klml26AvDmXschYZxX4Zyj-NUM3x7dSM0Ds1olR37Gg6wVvF-Cvc9s5vflx4dckGzxDNoSe0MiYPpUUdUDmCHR3kaeBHOjE8LAI_zhEuWGGCQiSR5XHixwYxnwqFskpYEWzAfFmVxRYwjUud2NKEgphPiyI1kUnjPLQpN5xb2YXj5tdlpuYzp7IafzLHxCwy_OYZffMuHLSSD47D4y8yu83fz2orHmcIfaQkwvwEX9E-RvujTRVVFtWUZAQtGnnKu7DptKbtBKGxlLgg68LRTDn-2Xt2fTmg6_b_Cn6DpYubQT_rXw5_7cCyoCAAOVS-C_OTx2mxB5_ME-rM435tFC8n1hJl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tS9xAEB7kLCJIa6-2XqvtFqR-St1sXjahn0rtUel5SK3gt7CvcFAT8e78Cf3dnblNUqQWBD8FktnskszsPDs7-wzAgfCIsbXmEVdZHqXaFlGBXiZSIk5tViZGZ6uDwhM5nRaXl-XZGnzqzsIEfog-4EaWsZqvycDdtfVHf1lD57Orj0Uucf5dT6mGzADWj3-MLyb9JkJXsZV2KXMZZx33LBdHXdu73ugfiHkXsa5czvjZowa7DU9bpMk-B9V4DmuuHsLGabuXPoStELFj4SDSEDYJdwba5hfw-5wS20NlCaZa4hLWeNYnprOQCcIWDVvWVyHSaBmurj0VakKHyGY1a3Qf9MWhzEPOIqPYL0P52xmqOb6dmhF6p0aU6o4dLRd4y8134GL89eeXb1FbsiEyRHMYCa2Msan0qAPKItjRiS2TONOF4alL4twiXPDCJE4Umed5EecGMZ9KhfJKeJG8hEHd1G4XmMalTu5pQkHMp4UrTWbK3Ka-5IZzL0dw2P26yrR85lRW41cVmJhFhd-8om8-gve95HXg8LhHZq_7-1VrxfMKoY-URJhf4Cv6x2h_tKmiatcsSUbQopGXfASvgtb0nSA0lhIXZCP4sFKO__ZenZ-c0vX1QwXfwcbZ8bianEy_v4FNQTEA8qd8DwaLm6XbhyfmFlXm5m1rE38AmY0R4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+analysis+of+treatment+effect+to+unmeasured+confounding+in+observational+studies+with+survival+and+competing+risks+outcomes&rft.jtitle=Statistics+in+medicine&rft.au=Huang%2C+Rong&rft.au=Xu%2C+Ronghui&rft.au=Dulai%2C+Parambir+S&rft.date=2020-10-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=39&rft.issue=24&rft.spage=3397&rft.epage=3411&rft_id=info:doi/10.1002%2Fsim.8672&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon