Kawasaki dynamics beyond the uniqueness threshold Kawasaki dynamics beyond the uniqueness threshold

Glauber dynamics of the Ising model on a random regular graph is known to mix fast below the tree uniqueness threshold and exponentially slowly above it. We show that Kawasaki dynamics of the canonical ferromagnetic Ising model on a random d -regular graph mixes fast beyond the tree uniqueness thres...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Probability theory and related fields Ročník 192; číslo 1; s. 267 - 302
Hlavní autoři: Bauerschmidt, Roland, Bodineau, Thierry, Dagallier, Benoit
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0178-8051, 1432-2064
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Glauber dynamics of the Ising model on a random regular graph is known to mix fast below the tree uniqueness threshold and exponentially slowly above it. We show that Kawasaki dynamics of the canonical ferromagnetic Ising model on a random d -regular graph mixes fast beyond the tree uniqueness threshold when d is large enough (and conjecture that it mixes fast up to the tree reconstruction threshold for all d ⩾ 3 ). This result follows from a more general spectral condition for (modified) log-Sobolev inequalities for conservative dynamics of Ising models. The proof of this condition in fact extends to perturbations of distributions with log-concave generating polynomial.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-024-01326-9