MI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment
This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA d...
Gespeichert in:
| Veröffentlicht in: | Software impacts Jg. 20; S. 100662 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.05.2024
|
| Schlagworte: | |
| ISSN: | 2665-9638, 2665-9638 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA data and designed an effective algorithm with the capability to predict varying floc lengths and the underlying kinetics under a broad flocculation conditions (Gf and Tf). Technically, the designed machine-intelligence framework (MI-NiDIA) involves data preprocessing, automatic parameter selection, validation and prediction of floc length evolution with metrics. For instance, MI-NiDIA-MLP recorded R2 of 0.95–1.0 for varying floc length at Gf60s−1.
•Proposed algorithm models floc evolution and flocculation kinetics with time-series.•Algorithm scales limited non-intrusive dynamic image analysis flocculation dataset.•Source code utilizes basic and well-supported Python modules.•The framework is compatible with other neural network algorithms.
[Display omitted] |
|---|---|
| ISSN: | 2665-9638 2665-9638 |
| DOI: | 10.1016/j.simpa.2024.100662 |