MI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment
This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA d...
Uložené v:
| Vydané v: | Software impacts Ročník 20; s. 100662 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.05.2024
|
| Predmet: | |
| ISSN: | 2665-9638, 2665-9638 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA data and designed an effective algorithm with the capability to predict varying floc lengths and the underlying kinetics under a broad flocculation conditions (Gf and Tf). Technically, the designed machine-intelligence framework (MI-NiDIA) involves data preprocessing, automatic parameter selection, validation and prediction of floc length evolution with metrics. For instance, MI-NiDIA-MLP recorded R2 of 0.95–1.0 for varying floc length at Gf60s−1.
•Proposed algorithm models floc evolution and flocculation kinetics with time-series.•Algorithm scales limited non-intrusive dynamic image analysis flocculation dataset.•Source code utilizes basic and well-supported Python modules.•The framework is compatible with other neural network algorithms.
[Display omitted] |
|---|---|
| ISSN: | 2665-9638 2665-9638 |
| DOI: | 10.1016/j.simpa.2024.100662 |