Extrapolated Smoothing Descent Algorithm for Constrained Nonconvex and Nonsmooth Composite Problems

In this paper, the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems, where the nonconvex term is possibly nonsmooth. Their algorithm adopts the proximal gradient algorithm with extrapolation and a safe-gua...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chinese annals of mathematics. Serie B Ročník 43; číslo 6; s. 1049 - 1070
Hlavní autori: Chen, Yunmei, Liu, Hongcheng, Wang, Weina
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Springer Nature B.V
Department of Mathematics,University of Florida,Gainesville 118105,USA%Industrial and Systems Engineering,University of Florida,Gainesville 118105,USA%Department of Mathematics,Hangzhou Dianzi University,Hangzhou 310018,China
Predmet:
ISSN:0252-9599, 1860-6261
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems, where the nonconvex term is possibly nonsmooth. Their algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed objective function for better practical and theoretical performance. Moreover, the algorithm uses a easily checking rule to update the smoothing parameter to ensure that any accumulation point of the generated sequence is an (affine-scaled) Clarke stationary point of the original nonsmooth and nonconvex problem. Their experimental results indicate the effectiveness of the proposed algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-022-0377-7