An unconditionally stable implicit time integration algorithm: Modified quartic B-spline method

•Proposing an implicit unconditionally stable time integration method.•Using quartic B-spline basis function.•Good accuracy compared to the methods in the literature.•The scheme can achieve lower numerical amplitude dissipation and period dispersion. In Ref. [1] an effective conditionally stable exp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & structures Ročník 153; s. 98 - 111
Hlavní autoři: Shojaee, Saeed, Rostami, Sobhan, Abbasi, Asghar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2015
Témata:
ISSN:0045-7949, 1879-2243
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Proposing an implicit unconditionally stable time integration method.•Using quartic B-spline basis function.•Good accuracy compared to the methods in the literature.•The scheme can achieve lower numerical amplitude dissipation and period dispersion. In Ref. [1] an effective conditionally stable explicit time integration scheme using quartic B-spline function was proposed for solving the problems in structural dynamics. The current paper presents a scheme where this method is developed to an implicit unconditionally stable time integration method. Using quartic B-spline basis function, this method gained second order of acceleration at each time-step. In this research, in order to applying the stabilization process, first, a series of implicit standard formulas were derived from previous formulation. Then after inserting two controlling parameters γ and β in the standard formulas, unconditional stability is guaranteed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-7949
1879-2243
DOI:10.1016/j.compstruc.2015.02.030