An Optimal Control Deep Learning Method to Design Artificial Viscosities for Discontinuous Galerkin Schemes
In this paper, we propose a method for constructing a neural network viscosity in order to reduce the non-physical oscillations generated by high-order Discontinuous Galerkin methods on uniform Cartesian grids. To this end, the problem is reformulated as an optimal control problem for which the cont...
Saved in:
| Published in: | Journal of scientific computing Vol. 101; no. 3; p. 70 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2024
Springer Nature B.V Springer Verlag |
| Subjects: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we propose a method for constructing a neural network viscosity in order to reduce the non-physical oscillations generated by high-order Discontinuous Galerkin methods on uniform Cartesian grids. To this end, the problem is reformulated as an optimal control problem for which the control is the viscosity function and the cost function involves comparison with a reference solution after several compositions of the scheme. The learning process is strongly based on gradient backpropagation tools. Numerical simulations show that the artificial viscosities, with a convolutional architecture, constructed in this way are just as good or better than those used in the literature. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-024-02698-9 |