One-Class Classification Using ℓp-Norm Multiple Kernel Fisher Null Approach
We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an ℓ p -norm regularisation ( p ≥ 1) is considered...
Uložené v:
| Vydané v: | IEEE transactions on image processing Ročník 32; s. 1 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an ℓ p -norm regularisation ( p ≥ 1) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms. |
|---|---|
| AbstractList | We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an [Formula Omitted]-norm regularisation ([Formula Omitted]) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms. We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an ℓ p -norm regularisation ( p ≥ 1) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms. We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an $\ell _{p}$ -norm regularisation ( $p \geq 1$ ) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an $\ell _{p}$ -norm regularisation ( $p \geq 1$ ) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms. We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an $\ell _{p}$ -norm regularisation ( $p \geq 1$ ) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms. |
| Author | Arashloo, Shervin Rahimzadeh |
| Author_xml | – sequence: 1 givenname: Shervin Rahimzadeh orcidid: 0000-0003-0189-4774 surname: Arashloo fullname: Arashloo, Shervin Rahimzadeh organization: Department of Computer Engineering, Faculty of Engineering, Bilkent University, Ankara, Turkey |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37028349$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kb9u2zAQxokgRZyk2TMEhYAuXeQe_1nkGBh1a9RJOsQzQUmnmAEtqaQ0ZO8b9A3zJGFsBygydDkeiN939-G-M3Lcdi0ScklhSinor_fLX1MGjE85k5ICOyKnVAuaAwh2nHqQRV5QoSfkLMZHACoknZ2QCS-AKS70Kbm5azGfextjtquucZUdXNdm6-jah-z5z98-v-3CNrsZ_eB6j9lPDC36bOHiBkN2O3qfXfd96Gy1-Ug-NNZHvDi852S9-HY__5Gv7r4v59ervOJCDXkpmoZLpBWFpq513aga0DYlsLoslRUWWWGVYMk_KGHTl2ICdS2lpVLNan5OvuznprW_R4yD2bpYofe2xW6MhhVaFaA45Qn9_A597MbQJneJUlooqhUk6tOBGsst1qYPbmvDk3k7VAJme6AKXYwBG1O5YXeoIVjnDQXzmohJiZjXRMwhkSSEd8K32f-RXO0lDhH_waEAmby-AFGGlWI |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1007_s10462_023_10673_3 crossref_primary_10_3390_math13071050 |
| Cites_doi | 10.1109/TNNLS.2016.2635151 10.1109/TCYB.2021.3052357 10.1109/CVPR.2017.243 10.1109/ICCVW.2015.114 10.1109/CVPR.2013.107 10.1109/TIFS.2014.2359587 10.1109/TIFS.2019.2922241 10.1016/j.patcog.2020.107696 10.1109/CVPR.2016.90 10.1109/JBHI.2013.2274479 10.1109/TNNLS.2014.2334137 10.1109/TCYB.2018.2804940 10.1145/1541880.1541882 10.1007/978-1-4615-2025-2_7 10.1109/CVPR.2015.7298594 10.1109/TSMCC.2008.2007248 10.1162/089976601750264965 10.1109/TPAMI.2013.149 10.1016/j.patcog.2006.07.009 10.1137/1.9780898718058 10.1109/WACV48630.2021.00205 10.1023/B:MACH.0000008084.60811.49 10.1201/9781315274508 10.1007/978-3-540-87536-9_23 10.1145/2980258.2980319 10.1109/ICCIC.2015.7435726 10.1109/CVPR.2019.00301 10.1109/ICVGIP.2008.47 10.1109/CVPR.2018.00356 10.1109/TKDE.2008.239 10.1109/ICCV48922.2021.00867 10.1109/CVPR.2018.00907 10.1109/TCSVT.2020.3046505 10.1016/j.patcog.2013.06.005 10.1109/TPAMI.2009.98 10.1007/s11263-009-0275-4 10.1109/GlobalSIP.2015.7418328 10.1109/TPAMI.2019.2895608 10.1109/LSP.2018.2889273 10.1109/TIFS.2008.2008216 10.1109/ACCESS.2017.2729161 10.1109/CVPR.2013.433 10.1109/ICPR.2018.8546301 10.1109/CVPR.2006.100 10.1109/CVPR46437.2021.01466 10.1016/j.neucom.2020.08.068 10.1016/j.patcog.2012.09.002 10.1109/CVPR.2018.00474 10.1109/TII.2014.2330796 10.1109/CVPR.2017.460 10.1109/TNNLS.2020.2979823 10.1109/CVPR42600.2020.01419 10.1109/FG.2017.77 10.1109/TNNLS.2017.2785329 10.5555/3294996.3295163 10.1109/TPAMI.2013.212 10.1109/CVPR.2019.00057 10.1109/TCYB.2018.2838668 10.1002/cpe.2933 10.1609/aaai.v33i01.33013991 10.1109/TIFS.2020.2985530 10.1109/TPAMI.2010.183 10.1109/TIP.2019.2917862 10.1109/CVPR.2017.439 10.1017/S026988891300043X |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2023.3255102 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 1 |
| ExternalDocumentID | 37028349 10_1109_TIP_2023_3255102 10070580 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: The Scientific and Technological Research Council of Turkey (T?B?TAK) grantid: 121E465 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 53G 5VS AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH VH1 AAYOK NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c348t-b4ff35e1c10fdd9df8d0eafb02dbb8a4ae27a842105084ab8a824e9d55a1586d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 11:50:46 EDT 2025 Mon Jun 30 10:11:07 EDT 2025 Sun Apr 06 01:21:17 EDT 2025 Tue Nov 18 21:18:39 EST 2025 Sat Nov 29 03:34:41 EST 2025 Wed Aug 27 02:25:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-b4ff35e1c10fdd9df8d0eafb02dbb8a4ae27a842105084ab8a824e9d55a1586d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0189-4774 |
| PMID | 37028349 |
| PQID | 2789481980 |
| PQPubID | 85429 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2789481980 pubmed_primary_37028349 crossref_primary_10_1109_TIP_2023_3255102 proquest_miscellaneous_2798708313 crossref_citationtrail_10_1109_TIP_2023_3255102 ieee_primary_10070580 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref56 (ref82) 2017 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Perera (ref63) 2018 ref18 Kloft (ref33) 2011; 12 Chalapathy (ref57) 2018 Lanckriet (ref36) 2004; 5 Sonnenburg (ref39) 2006; 7 Kozerawski (ref79) 2021 ref92 ref91 ref90 Loosli (ref38) ref46 Ruff (ref77); 80 ref45 ref48 ref47 Stewart (ref89) 2001; 1 ref42 ref86 ref41 ref44 ref87 Krizhevsky (ref61) 2009 ref49 Tax (ref13) 2001 ref8 Yan (ref32) 2012; 13 ref7 ref9 ref4 ref3 ref6 ref5 ref81 ref40 ref84 ref83 Hu (ref74); 33 Ren (ref62) 2018 ref80 ref35 von Neumann (ref43) Ravi (ref65) ref31 ref75 ref30 ref76 Grant (ref88) 2014 ref2 ref1 Cortes (ref34) Griffin (ref59) 2007 ref71 ref70 ref72 Krizhevsky (ref51); 25 ref24 ref68 ref67 ref26 ref25 ref69 ref20 ref64 ref22 Gönen (ref23) 2011; 12 ref66 ref21 Rakotomamonjy (ref37) 2008; 9 ref28 ref27 ref29 Golan (ref78); 31 Simonyan (ref50) 2014 Kliger (ref73) 2018 Feng (ref85) 2020 LeCun (ref60) 2010 |
| References_xml | – ident: ref25 doi: 10.1109/TNNLS.2016.2635151 – ident: ref30 doi: 10.1109/TCYB.2021.3052357 – ident: ref54 doi: 10.1109/CVPR.2017.243 – ident: ref70 doi: 10.1109/ICCVW.2015.114 – volume-title: Information Technology—Biometric Presentation Attack Detection—Part 3: Testing and Reporting year: 2017 ident: ref82 – ident: ref46 doi: 10.1109/CVPR.2013.107 – ident: ref90 doi: 10.1109/TIFS.2014.2359587 – ident: ref86 doi: 10.1109/TIFS.2019.2922241 – ident: ref81 doi: 10.1016/j.patcog.2020.107696 – ident: ref49 doi: 10.1109/CVPR.2016.90 – ident: ref5 doi: 10.1109/JBHI.2013.2274479 – volume: 9 start-page: 2491 year: 2008 ident: ref37 article-title: SimpleMKL publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 2211 issue: 64 year: 2011 ident: ref23 article-title: Multiple kernel learning algorithms publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 953 year: 2011 ident: ref33 article-title: Lp-norm multiple kernel learning publication-title: J. Mach. Lear. Res. – ident: ref24 doi: 10.1109/TNNLS.2014.2334137 – year: 2018 ident: ref57 article-title: Anomaly detection using one-class neural networks publication-title: arXiv:1802.06360 – ident: ref11 doi: 10.1109/TCYB.2018.2804940 – ident: ref1 doi: 10.1145/1541880.1541882 – volume: 5 start-page: 27 year: 2004 ident: ref36 article-title: Learning the kernel matrix with semidefinite programming publication-title: J. Mach. Learn. Res. – ident: ref42 doi: 10.1007/978-1-4615-2025-2_7 – ident: ref48 doi: 10.1109/CVPR.2015.7298594 – ident: ref8 doi: 10.1109/TSMCC.2008.2007248 – ident: ref16 doi: 10.1162/089976601750264965 – ident: ref27 doi: 10.1109/TPAMI.2013.149 – ident: ref18 doi: 10.1016/j.patcog.2006.07.009 – volume: 1 volume-title: Matrix Algorithms: Basic Decompositions year: 2001 ident: ref89 doi: 10.1137/1.9780898718058 – start-page: 1 volume-title: Proc. 25th Conf. Uncertainty Artif. Intell. (UAI) ident: ref34 article-title: L2 regularization for learning kernels – year: 2018 ident: ref63 article-title: Learning deep features for one-class classification publication-title: arXiv:1801.05365 – ident: ref71 doi: 10.1109/WACV48630.2021.00205 – ident: ref14 doi: 10.1023/B:MACH.0000008084.60811.49 – ident: ref44 doi: 10.1201/9781315274508 – volume: 13 start-page: 607 issue: 1 year: 2012 ident: ref32 article-title: Non-sparse multiple kernel Fisher discriminant analysis publication-title: J. Mach. Learn. Res. – start-page: 1 volume-title: Proc. 5th Int. Conf. Learn. Represent. (ICLR) ident: ref65 article-title: Optimization as a model for few-shot learning – ident: ref41 doi: 10.1007/978-3-540-87536-9_23 – ident: ref9 doi: 10.1145/2980258.2980319 – volume: 80 start-page: 4393 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref77 article-title: Deep one-class classification – ident: ref10 doi: 10.1109/ICCIC.2015.7435726 – ident: ref67 doi: 10.1109/CVPR.2019.00301 – year: 2009 ident: ref61 article-title: Learning multiple layers of features from tiny images – ident: ref45 doi: 10.1109/ICVGIP.2008.47 – ident: ref64 doi: 10.1109/CVPR.2018.00356 – ident: ref3 doi: 10.1109/TKDE.2008.239 – ident: ref75 doi: 10.1109/ICCV48922.2021.00867 – ident: ref52 doi: 10.1109/CVPR.2018.00907 – ident: ref80 doi: 10.1109/TCSVT.2020.3046505 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref78 article-title: Deep anomaly detection using geometric transformations – year: 2021 ident: ref79 article-title: One-class meta-learning: Towards generalizable few-shot open-set classification publication-title: arXiv:2109.06859 – ident: ref17 doi: 10.1016/j.patcog.2013.06.005 – ident: ref31 doi: 10.1109/TPAMI.2009.98 – ident: ref47 doi: 10.1007/s11263-009-0275-4 – year: 2007 ident: ref59 article-title: Caltech256 image dataset – ident: ref92 doi: 10.1109/GlobalSIP.2015.7418328 – start-page: 1 volume-title: Proc. CAp ident: ref38 article-title: Using SVDD in SimpleMKL for 3D-shapes filtering – ident: ref29 doi: 10.1109/TPAMI.2019.2895608 – ident: ref58 doi: 10.1109/LSP.2018.2889273 – ident: ref6 doi: 10.1109/TIFS.2008.2008216 – year: 2001 ident: ref13 article-title: One-class classification: Concept-learning in the absence of counter-examples – ident: ref4 doi: 10.1109/ACCESS.2017.2729161 – ident: ref20 doi: 10.1109/CVPR.2013.433 – ident: ref21 doi: 10.1109/ICPR.2018.8546301 – ident: ref56 doi: 10.1109/CVPR.2006.100 – ident: ref69 doi: 10.1109/CVPR46437.2021.01466 – volume-title: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1 year: 2014 ident: ref88 – ident: ref84 doi: 10.1016/j.neucom.2020.08.068 – year: 2014 ident: ref50 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – year: 2018 ident: ref62 article-title: Meta-learning for semi-supervised few-shot classification publication-title: arXiv:1803.00676 – volume: 7 start-page: 1531 year: 2006 ident: ref39 article-title: Large scale multiple kernel learning publication-title: J. Mach. Learn. Res. – ident: ref40 doi: 10.1016/j.patcog.2012.09.002 – ident: ref53 doi: 10.1109/CVPR.2018.00474 – ident: ref7 doi: 10.1109/TII.2014.2330796 – ident: ref66 doi: 10.1109/CVPR.2017.460 – ident: ref22 doi: 10.1109/TNNLS.2020.2979823 – ident: ref72 doi: 10.1109/CVPR42600.2020.01419 – ident: ref83 doi: 10.1109/FG.2017.77 – year: 2020 ident: ref85 article-title: Learning generalized spoof cues for face anti-spoofing publication-title: arXiv:2005.03922 – start-page: 73 volume-title: Proc. Wein 8th Ergebn. Math. Kolloq. ident: ref43 article-title: Uber ein okonomisches gleichungssystem und eine verallgemeinerung des brouwerschen fixpunktsatzes – volume: 25 start-page: 1097 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref51 article-title: ImageNet classification with deep convolutional neural networks – ident: ref35 doi: 10.1109/TNNLS.2017.2785329 – ident: ref76 doi: 10.5555/3294996.3295163 – year: 2018 ident: ref73 article-title: Novelty detection with GAN publication-title: arXiv:1802.10560 – ident: ref26 doi: 10.1109/TPAMI.2013.212 – ident: ref68 doi: 10.1109/CVPR.2019.00057 – ident: ref12 doi: 10.1109/TCYB.2018.2838668 – ident: ref91 doi: 10.1002/cpe.2933 – ident: ref15 doi: 10.1609/aaai.v33i01.33013991 – ident: ref87 doi: 10.1109/TIFS.2020.2985530 – volume-title: MNIST Handwritten Digit Database year: 2010 ident: ref60 – ident: ref28 doi: 10.1109/TPAMI.2010.183 – ident: ref55 doi: 10.1109/TIP.2019.2917862 – ident: ref19 doi: 10.1109/CVPR.2017.439 – volume: 33 start-page: 19111 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref74 article-title: HRN: A holistic approach to one class learning – ident: ref2 doi: 10.1017/S026988891300043X |
| SSID | ssj0014516 |
| Score | 2.4322436 |
| Snippet | We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Classification Kernel Kernels Machine learning multiple kernel learning One-class classification one-class Fisher null transformation Optimization Pattern recognition Regularization Saddle points Search problems Support vector machines Task analysis Training ℓ<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> p -norm regularisation |
| Title | One-Class Classification Using ℓp-Norm Multiple Kernel Fisher Null Approach |
| URI | https://ieeexplore.ieee.org/document/10070580 https://www.ncbi.nlm.nih.gov/pubmed/37028349 https://www.proquest.com/docview/2789481980 https://www.proquest.com/docview/2798708313 |
| Volume | 32 |
| WOSCitedRecordID | wos000957597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB61qAd6AEopXf7kSlx68G4S27F9RKgIVLHlANLeoiQeS0goi_anT8Ab8IY8CWPHu-JCpV6iKHYSyzOTfOPxzAdwao1xjnAC1ypHLr3KedP4kqOUsihcaYRoI9mEHo_NZGJvUrJ6zIVBxLj5DIfhNMby3bRdhqWyUYjoZ8qQh_5R67JP1lqHDALjbAxtKs014f5VTDKzo9urm2GgCR8KAtB5WkFZ_YMiqcr7-DL-Zy62_3OEO7CVACU76zXgC3zAbhe2E7hkyXTnu_D5TeXBr3D9p0MeCTFZPIYNQ1FGLO4hYC9Pz498THiWXacdh-w3zjp8YD1XOhuT68rOUkHyPbi7-HV7fskTswJvhTQL3kjvhcK8zTPvnHXeuAxr32SFaxpTyxoLXRtJ7iDhN1nTJVNItE6pOlemdOIbbHTTDr8Ds6X2Wtqs9SRdbRrSCZc5T3aOKhTHG8BoNddVm8qOB_aLhyq6H5mtSDpVkE6VpDOAn-s7HvuSG__ouxeE8KZfP_8DOFrJs0pGOa9C0q8kBBSaf6ybyZxCjKTucLoMfSx9wYzIxQD2ez1YP1zoAMakPXjnpYewGcbWL9AcwcZitsRj-NT-XdzPZyeksxNzEnX2FSZ85rs |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5VFKntASgFuoW2rtRLD95NYnttHxEqAsGmHLYStyiJxxISyqL96RP0DfqGfRLGjnfFhUq9RFHsJJZnJvnG45kP4Ks1xjnCCVyrHLn0KudN48ccpZRF4cZGiDaSTeiyNLe39iYlq8dcGESMm89wGE5jLN_N2lVYKhuFiH6mDHnoL5Ukx6dP19oEDQLnbAxuKs01If91VDKzo-nlzTAQhQ8FQeg8raGs_0KRVuV5hBn_NOe7_znGPdhJkJKd9jrwFl5gtw-7CV6yZLyLfXjzpPbgO5j86JBHSkwWj2HLUJQSi7sI2N_ffx54SYiWTdKeQ3aF8w7vWc-WzkpyXtlpKkl-AD_Pv0_PLnjiVuCtkGbJG-m9UJi3eeads84bl2Htm6xwTWNqWWOhayPJISQEJ2u6ZAqJ1ilV58qMnTiErW7W4Xtgdqy9ljZrPclXm4a0wmXOk6WjCuXxBjBaz3XVpsLjgf_ivooOSGYrkk4VpFMl6Qzg2-aOh77oxj_6HgQhPOnXz_8ATtbyrJJZLqqQ9isJA4XmL5tmMqgQJak7nK1CH0vfMCNyMYCjXg82Dxc6wDFpPzzz0s_w6mI6ua6uL8urY3gdxtkv15zA1nK-wo-w3f5a3i3mn6LmPgLbZ-ka |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Class+Classification+Using+%E2%84%93p-Norm+Multiple+Kernel+Fisher+Null+Approach&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Rahimzadeh+Arashloo%2C+Shervin&rft.date=2023-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=32&rft.spage=1843&rft_id=info:doi/10.1109%2FTIP.2023.3255102&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |