One-Class Classification Using ℓp-Norm Multiple Kernel Fisher Null Approach

We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an ℓ p -norm regularisation ( p ≥ 1) is considered...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 32; s. 1
Hlavný autor: Arashloo, Shervin Rahimzadeh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an ℓ p -norm regularisation ( p ≥ 1) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.
AbstractList We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an [Formula Omitted]-norm regularisation ([Formula Omitted]) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.
We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an ℓ p -norm regularisation ( p ≥ 1) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.
We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an $\ell _{p}$ -norm regularisation ( $p \geq 1$ ) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an $\ell _{p}$ -norm regularisation ( $p \geq 1$ ) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.
We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an $\ell _{p}$ -norm regularisation ( $p \geq 1$ ) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.
Author Arashloo, Shervin Rahimzadeh
Author_xml – sequence: 1
  givenname: Shervin Rahimzadeh
  orcidid: 0000-0003-0189-4774
  surname: Arashloo
  fullname: Arashloo, Shervin Rahimzadeh
  organization: Department of Computer Engineering, Faculty of Engineering, Bilkent University, Ankara, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37028349$$D View this record in MEDLINE/PubMed
BookMark eNp9kb9u2zAQxokgRZyk2TMEhYAuXeQe_1nkGBh1a9RJOsQzQUmnmAEtqaQ0ZO8b9A3zJGFsBygydDkeiN939-G-M3Lcdi0ScklhSinor_fLX1MGjE85k5ICOyKnVAuaAwh2nHqQRV5QoSfkLMZHACoknZ2QCS-AKS70Kbm5azGfextjtquucZUdXNdm6-jah-z5z98-v-3CNrsZ_eB6j9lPDC36bOHiBkN2O3qfXfd96Gy1-Ug-NNZHvDi852S9-HY__5Gv7r4v59ervOJCDXkpmoZLpBWFpq513aga0DYlsLoslRUWWWGVYMk_KGHTl2ICdS2lpVLNan5OvuznprW_R4yD2bpYofe2xW6MhhVaFaA45Qn9_A597MbQJneJUlooqhUk6tOBGsst1qYPbmvDk3k7VAJme6AKXYwBG1O5YXeoIVjnDQXzmohJiZjXRMwhkSSEd8K32f-RXO0lDhH_waEAmby-AFGGlWI
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s10462_023_10673_3
crossref_primary_10_3390_math13071050
Cites_doi 10.1109/TNNLS.2016.2635151
10.1109/TCYB.2021.3052357
10.1109/CVPR.2017.243
10.1109/ICCVW.2015.114
10.1109/CVPR.2013.107
10.1109/TIFS.2014.2359587
10.1109/TIFS.2019.2922241
10.1016/j.patcog.2020.107696
10.1109/CVPR.2016.90
10.1109/JBHI.2013.2274479
10.1109/TNNLS.2014.2334137
10.1109/TCYB.2018.2804940
10.1145/1541880.1541882
10.1007/978-1-4615-2025-2_7
10.1109/CVPR.2015.7298594
10.1109/TSMCC.2008.2007248
10.1162/089976601750264965
10.1109/TPAMI.2013.149
10.1016/j.patcog.2006.07.009
10.1137/1.9780898718058
10.1109/WACV48630.2021.00205
10.1023/B:MACH.0000008084.60811.49
10.1201/9781315274508
10.1007/978-3-540-87536-9_23
10.1145/2980258.2980319
10.1109/ICCIC.2015.7435726
10.1109/CVPR.2019.00301
10.1109/ICVGIP.2008.47
10.1109/CVPR.2018.00356
10.1109/TKDE.2008.239
10.1109/ICCV48922.2021.00867
10.1109/CVPR.2018.00907
10.1109/TCSVT.2020.3046505
10.1016/j.patcog.2013.06.005
10.1109/TPAMI.2009.98
10.1007/s11263-009-0275-4
10.1109/GlobalSIP.2015.7418328
10.1109/TPAMI.2019.2895608
10.1109/LSP.2018.2889273
10.1109/TIFS.2008.2008216
10.1109/ACCESS.2017.2729161
10.1109/CVPR.2013.433
10.1109/ICPR.2018.8546301
10.1109/CVPR.2006.100
10.1109/CVPR46437.2021.01466
10.1016/j.neucom.2020.08.068
10.1016/j.patcog.2012.09.002
10.1109/CVPR.2018.00474
10.1109/TII.2014.2330796
10.1109/CVPR.2017.460
10.1109/TNNLS.2020.2979823
10.1109/CVPR42600.2020.01419
10.1109/FG.2017.77
10.1109/TNNLS.2017.2785329
10.5555/3294996.3295163
10.1109/TPAMI.2013.212
10.1109/CVPR.2019.00057
10.1109/TCYB.2018.2838668
10.1002/cpe.2933
10.1609/aaai.v33i01.33013991
10.1109/TIFS.2020.2985530
10.1109/TPAMI.2010.183
10.1109/TIP.2019.2917862
10.1109/CVPR.2017.439
10.1017/S026988891300043X
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2023.3255102
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID 37028349
10_1109_TIP_2023_3255102
10070580
Genre orig-research
Journal Article
GrantInformation_xml – fundername: The Scientific and Technological Research Council of Turkey (T?B?TAK)
  grantid: 121E465
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
53G
5VS
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
AAYOK
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c348t-b4ff35e1c10fdd9df8d0eafb02dbb8a4ae27a842105084ab8a824e9d55a1586d3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 11:50:46 EDT 2025
Mon Jun 30 10:11:07 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Tue Nov 18 21:18:39 EST 2025
Sat Nov 29 03:34:41 EST 2025
Wed Aug 27 02:25:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-b4ff35e1c10fdd9df8d0eafb02dbb8a4ae27a842105084ab8a824e9d55a1586d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0189-4774
PMID 37028349
PQID 2789481980
PQPubID 85429
PageCount 1
ParticipantIDs proquest_journals_2789481980
pubmed_primary_37028349
crossref_primary_10_1109_TIP_2023_3255102
proquest_miscellaneous_2798708313
crossref_citationtrail_10_1109_TIP_2023_3255102
ieee_primary_10070580
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref56
(ref82) 2017
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Perera (ref63) 2018
ref18
Kloft (ref33) 2011; 12
Chalapathy (ref57) 2018
Lanckriet (ref36) 2004; 5
Sonnenburg (ref39) 2006; 7
Kozerawski (ref79) 2021
ref92
ref91
ref90
Loosli (ref38)
ref46
Ruff (ref77); 80
ref45
ref48
ref47
Stewart (ref89) 2001; 1
ref42
ref86
ref41
ref44
ref87
Krizhevsky (ref61) 2009
ref49
Tax (ref13) 2001
ref8
Yan (ref32) 2012; 13
ref7
ref9
ref4
ref3
ref6
ref5
ref81
ref40
ref84
ref83
Hu (ref74); 33
Ren (ref62) 2018
ref80
ref35
von Neumann (ref43)
Ravi (ref65)
ref31
ref75
ref30
ref76
Grant (ref88) 2014
ref2
ref1
Cortes (ref34)
Griffin (ref59) 2007
ref71
ref70
ref72
Krizhevsky (ref51); 25
ref24
ref68
ref67
ref26
ref25
ref69
ref20
ref64
ref22
Gönen (ref23) 2011; 12
ref66
ref21
Rakotomamonjy (ref37) 2008; 9
ref28
ref27
ref29
Golan (ref78); 31
Simonyan (ref50) 2014
Kliger (ref73) 2018
Feng (ref85) 2020
LeCun (ref60) 2010
References_xml – ident: ref25
  doi: 10.1109/TNNLS.2016.2635151
– ident: ref30
  doi: 10.1109/TCYB.2021.3052357
– ident: ref54
  doi: 10.1109/CVPR.2017.243
– ident: ref70
  doi: 10.1109/ICCVW.2015.114
– volume-title: Information Technology—Biometric Presentation Attack Detection—Part 3: Testing and Reporting
  year: 2017
  ident: ref82
– ident: ref46
  doi: 10.1109/CVPR.2013.107
– ident: ref90
  doi: 10.1109/TIFS.2014.2359587
– ident: ref86
  doi: 10.1109/TIFS.2019.2922241
– ident: ref81
  doi: 10.1016/j.patcog.2020.107696
– ident: ref49
  doi: 10.1109/CVPR.2016.90
– ident: ref5
  doi: 10.1109/JBHI.2013.2274479
– volume: 9
  start-page: 2491
  year: 2008
  ident: ref37
  article-title: SimpleMKL
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 2211
  issue: 64
  year: 2011
  ident: ref23
  article-title: Multiple kernel learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 953
  year: 2011
  ident: ref33
  article-title: Lp-norm multiple kernel learning
  publication-title: J. Mach. Lear. Res.
– ident: ref24
  doi: 10.1109/TNNLS.2014.2334137
– year: 2018
  ident: ref57
  article-title: Anomaly detection using one-class neural networks
  publication-title: arXiv:1802.06360
– ident: ref11
  doi: 10.1109/TCYB.2018.2804940
– ident: ref1
  doi: 10.1145/1541880.1541882
– volume: 5
  start-page: 27
  year: 2004
  ident: ref36
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: J. Mach. Learn. Res.
– ident: ref42
  doi: 10.1007/978-1-4615-2025-2_7
– ident: ref48
  doi: 10.1109/CVPR.2015.7298594
– ident: ref8
  doi: 10.1109/TSMCC.2008.2007248
– ident: ref16
  doi: 10.1162/089976601750264965
– ident: ref27
  doi: 10.1109/TPAMI.2013.149
– ident: ref18
  doi: 10.1016/j.patcog.2006.07.009
– volume: 1
  volume-title: Matrix Algorithms: Basic Decompositions
  year: 2001
  ident: ref89
  doi: 10.1137/1.9780898718058
– start-page: 1
  volume-title: Proc. 25th Conf. Uncertainty Artif. Intell. (UAI)
  ident: ref34
  article-title: L2 regularization for learning kernels
– year: 2018
  ident: ref63
  article-title: Learning deep features for one-class classification
  publication-title: arXiv:1801.05365
– ident: ref71
  doi: 10.1109/WACV48630.2021.00205
– ident: ref14
  doi: 10.1023/B:MACH.0000008084.60811.49
– ident: ref44
  doi: 10.1201/9781315274508
– volume: 13
  start-page: 607
  issue: 1
  year: 2012
  ident: ref32
  article-title: Non-sparse multiple kernel Fisher discriminant analysis
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  volume-title: Proc. 5th Int. Conf. Learn. Represent. (ICLR)
  ident: ref65
  article-title: Optimization as a model for few-shot learning
– ident: ref41
  doi: 10.1007/978-3-540-87536-9_23
– ident: ref9
  doi: 10.1145/2980258.2980319
– volume: 80
  start-page: 4393
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  ident: ref77
  article-title: Deep one-class classification
– ident: ref10
  doi: 10.1109/ICCIC.2015.7435726
– ident: ref67
  doi: 10.1109/CVPR.2019.00301
– year: 2009
  ident: ref61
  article-title: Learning multiple layers of features from tiny images
– ident: ref45
  doi: 10.1109/ICVGIP.2008.47
– ident: ref64
  doi: 10.1109/CVPR.2018.00356
– ident: ref3
  doi: 10.1109/TKDE.2008.239
– ident: ref75
  doi: 10.1109/ICCV48922.2021.00867
– ident: ref52
  doi: 10.1109/CVPR.2018.00907
– ident: ref80
  doi: 10.1109/TCSVT.2020.3046505
– volume: 31
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref78
  article-title: Deep anomaly detection using geometric transformations
– year: 2021
  ident: ref79
  article-title: One-class meta-learning: Towards generalizable few-shot open-set classification
  publication-title: arXiv:2109.06859
– ident: ref17
  doi: 10.1016/j.patcog.2013.06.005
– ident: ref31
  doi: 10.1109/TPAMI.2009.98
– ident: ref47
  doi: 10.1007/s11263-009-0275-4
– year: 2007
  ident: ref59
  article-title: Caltech256 image dataset
– ident: ref92
  doi: 10.1109/GlobalSIP.2015.7418328
– start-page: 1
  volume-title: Proc. CAp
  ident: ref38
  article-title: Using SVDD in SimpleMKL for 3D-shapes filtering
– ident: ref29
  doi: 10.1109/TPAMI.2019.2895608
– ident: ref58
  doi: 10.1109/LSP.2018.2889273
– ident: ref6
  doi: 10.1109/TIFS.2008.2008216
– year: 2001
  ident: ref13
  article-title: One-class classification: Concept-learning in the absence of counter-examples
– ident: ref4
  doi: 10.1109/ACCESS.2017.2729161
– ident: ref20
  doi: 10.1109/CVPR.2013.433
– ident: ref21
  doi: 10.1109/ICPR.2018.8546301
– ident: ref56
  doi: 10.1109/CVPR.2006.100
– ident: ref69
  doi: 10.1109/CVPR46437.2021.01466
– volume-title: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1
  year: 2014
  ident: ref88
– ident: ref84
  doi: 10.1016/j.neucom.2020.08.068
– year: 2014
  ident: ref50
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– year: 2018
  ident: ref62
  article-title: Meta-learning for semi-supervised few-shot classification
  publication-title: arXiv:1803.00676
– volume: 7
  start-page: 1531
  year: 2006
  ident: ref39
  article-title: Large scale multiple kernel learning
  publication-title: J. Mach. Learn. Res.
– ident: ref40
  doi: 10.1016/j.patcog.2012.09.002
– ident: ref53
  doi: 10.1109/CVPR.2018.00474
– ident: ref7
  doi: 10.1109/TII.2014.2330796
– ident: ref66
  doi: 10.1109/CVPR.2017.460
– ident: ref22
  doi: 10.1109/TNNLS.2020.2979823
– ident: ref72
  doi: 10.1109/CVPR42600.2020.01419
– ident: ref83
  doi: 10.1109/FG.2017.77
– year: 2020
  ident: ref85
  article-title: Learning generalized spoof cues for face anti-spoofing
  publication-title: arXiv:2005.03922
– start-page: 73
  volume-title: Proc. Wein 8th Ergebn. Math. Kolloq.
  ident: ref43
  article-title: Uber ein okonomisches gleichungssystem und eine verallgemeinerung des brouwerschen fixpunktsatzes
– volume: 25
  start-page: 1097
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref51
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref35
  doi: 10.1109/TNNLS.2017.2785329
– ident: ref76
  doi: 10.5555/3294996.3295163
– year: 2018
  ident: ref73
  article-title: Novelty detection with GAN
  publication-title: arXiv:1802.10560
– ident: ref26
  doi: 10.1109/TPAMI.2013.212
– ident: ref68
  doi: 10.1109/CVPR.2019.00057
– ident: ref12
  doi: 10.1109/TCYB.2018.2838668
– ident: ref91
  doi: 10.1002/cpe.2933
– ident: ref15
  doi: 10.1609/aaai.v33i01.33013991
– ident: ref87
  doi: 10.1109/TIFS.2020.2985530
– volume-title: MNIST Handwritten Digit Database
  year: 2010
  ident: ref60
– ident: ref28
  doi: 10.1109/TPAMI.2010.183
– ident: ref55
  doi: 10.1109/TIP.2019.2917862
– ident: ref19
  doi: 10.1109/CVPR.2017.439
– volume: 33
  start-page: 19111
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref74
  article-title: HRN: A holistic approach to one class learning
– ident: ref2
  doi: 10.1017/S026988891300043X
SSID ssj0014516
Score 2.4322436
Snippet We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Classification
Kernel
Kernels
Machine learning
multiple kernel learning
One-class classification
one-class Fisher null transformation
Optimization
Pattern recognition
Regularization
Saddle points
Search problems
Support vector machines
Task analysis
Training
ℓ<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> p -norm regularisation
Title One-Class Classification Using ℓp-Norm Multiple Kernel Fisher Null Approach
URI https://ieeexplore.ieee.org/document/10070580
https://www.ncbi.nlm.nih.gov/pubmed/37028349
https://www.proquest.com/docview/2789481980
https://www.proquest.com/docview/2798708313
Volume 32
WOSCitedRecordID wos000957597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB61qAd6AEopXf7kSlx68G4S27F9RKgIVLHlANLeoiQeS0goi_anT8Ab8IY8CWPHu-JCpV6iKHYSyzOTfOPxzAdwao1xjnAC1ypHLr3KedP4kqOUsihcaYRoI9mEHo_NZGJvUrJ6zIVBxLj5DIfhNMby3bRdhqWyUYjoZ8qQh_5R67JP1lqHDALjbAxtKs014f5VTDKzo9urm2GgCR8KAtB5WkFZ_YMiqcr7-DL-Zy62_3OEO7CVACU76zXgC3zAbhe2E7hkyXTnu_D5TeXBr3D9p0MeCTFZPIYNQ1FGLO4hYC9Pz498THiWXacdh-w3zjp8YD1XOhuT68rOUkHyPbi7-HV7fskTswJvhTQL3kjvhcK8zTPvnHXeuAxr32SFaxpTyxoLXRtJ7iDhN1nTJVNItE6pOlemdOIbbHTTDr8Ds6X2Wtqs9SRdbRrSCZc5T3aOKhTHG8BoNddVm8qOB_aLhyq6H5mtSDpVkE6VpDOAn-s7HvuSG__ouxeE8KZfP_8DOFrJs0pGOa9C0q8kBBSaf6ybyZxCjKTucLoMfSx9wYzIxQD2ez1YP1zoAMakPXjnpYewGcbWL9AcwcZitsRj-NT-XdzPZyeksxNzEnX2FSZ85rs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5VFKntASgFuoW2rtRLD95NYnttHxEqAsGmHLYStyiJxxISyqL96RP0DfqGfRLGjnfFhUq9RFHsJJZnJvnG45kP4Ks1xjnCCVyrHLn0KudN48ccpZRF4cZGiDaSTeiyNLe39iYlq8dcGESMm89wGE5jLN_N2lVYKhuFiH6mDHnoL5Ukx6dP19oEDQLnbAxuKs01If91VDKzo-nlzTAQhQ8FQeg8raGs_0KRVuV5hBn_NOe7_znGPdhJkJKd9jrwFl5gtw-7CV6yZLyLfXjzpPbgO5j86JBHSkwWj2HLUJQSi7sI2N_ffx54SYiWTdKeQ3aF8w7vWc-WzkpyXtlpKkl-AD_Pv0_PLnjiVuCtkGbJG-m9UJi3eeads84bl2Htm6xwTWNqWWOhayPJISQEJ2u6ZAqJ1ilV58qMnTiErW7W4Xtgdqy9ljZrPclXm4a0wmXOk6WjCuXxBjBaz3XVpsLjgf_ivooOSGYrkk4VpFMl6Qzg2-aOh77oxj_6HgQhPOnXz_8ATtbyrJJZLqqQ9isJA4XmL5tmMqgQJak7nK1CH0vfMCNyMYCjXg82Dxc6wDFpPzzz0s_w6mI6ua6uL8urY3gdxtkv15zA1nK-wo-w3f5a3i3mn6LmPgLbZ-ka
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Class+Classification+Using+%E2%84%93p-Norm+Multiple+Kernel+Fisher+Null+Approach&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Rahimzadeh+Arashloo%2C+Shervin&rft.date=2023-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=32&rft.spage=1843&rft_id=info:doi/10.1109%2FTIP.2023.3255102&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon