One-Class Classification Using ℓp-Norm Multiple Kernel Fisher Null Approach

We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an ℓ p -norm regularisation ( p ≥ 1) is considered...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 32; s. 1
Hlavní autor: Arashloo, Shervin Rahimzadeh
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We address the one-class classification (OCC) problem and advocate a one-class MKL (multiple kernel learning) approach for this purpose. To this aim, based on the Fisher null-space OCC principle, we present a multiple kernel learning algorithm where an ℓ p -norm regularisation ( p ≥ 1) is considered for kernel weight learning. We cast the proposed one-class MKL problem as a min-max saddle point Lagrangian optimisation task and propose an efficient approach to optimise it. An extension of the proposed approach is also considered where several related one-class MKL tasks are learned concurrently by constraining them to share common weights for kernels. An extensive evaluation of the proposed MKL approach on a range of data sets from different application domains confirms its merits against the baseline and several other algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2023.3255102