Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition
For a system of linear ordinary differential equations supplemented with a nonlocal condition specified by the Stieltjes integral, the problem of calculating the eigenvalues belonging to a given bounded domain in the complex plane is examined. It is assumed that the coefficient matrix of the system...
Saved in:
| Published in: | Computational mathematics and mathematical physics Vol. 52; no. 2; pp. 213 - 218 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
SP MAIK Nauka/Interperiodica
01.02.2012
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0965-5425, 1555-6662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | For a system of linear ordinary differential equations supplemented with a nonlocal condition specified by the Stieltjes integral, the problem of calculating the eigenvalues belonging to a given bounded domain in the complex plane is examined. It is assumed that the coefficient matrix of the system and the matrix function in the Stieltjes integral are analytic functions of the spectral parameter. A numerically stable method for solving this problem is proposed and justified. It is based on the use of an auxiliary boundary value problem and formulas of the argument principle type. The problem of calculating the corresponding eigenfunctions is also treated. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0965-5425 1555-6662 |
| DOI: | 10.1134/S0965542512020029 |