Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition

For a system of linear ordinary differential equations supplemented with a nonlocal condition specified by the Stieltjes integral, the problem of calculating the eigenvalues belonging to a given bounded domain in the complex plane is examined. It is assumed that the coefficient matrix of the system...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics Vol. 52; no. 2; pp. 213 - 218
Main Authors: Abramov, A. A., Yukhno, L. F.
Format: Journal Article
Language:English
Published: Dordrecht SP MAIK Nauka/Interperiodica 01.02.2012
Springer Nature B.V
Subjects:
ISSN:0965-5425, 1555-6662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For a system of linear ordinary differential equations supplemented with a nonlocal condition specified by the Stieltjes integral, the problem of calculating the eigenvalues belonging to a given bounded domain in the complex plane is examined. It is assumed that the coefficient matrix of the system and the matrix function in the Stieltjes integral are analytic functions of the spectral parameter. A numerically stable method for solving this problem is proposed and justified. It is based on the use of an auxiliary boundary value problem and formulas of the argument principle type. The problem of calculating the corresponding eigenfunctions is also treated.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542512020029