Nonlinear stability of shock-fronted travelling waves in reaction-nonlinear diffusion equations
Reaction-nonlinear diffusion PDEs can be derived as continuum limits of stochastic models for biological and ecological invasion. We numerically investigate the nonlinear stability of shock-fronted travelling waves arising in these RND PDEs, in the presence of a fourth-order spatial derivative multi...
Uložené v:
| Vydané v: | Physica. D Ročník 460; s. 134069 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.04.2024
|
| Predmet: | |
| ISSN: | 0167-2789, 1872-8022 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Reaction-nonlinear diffusion PDEs can be derived as continuum limits of stochastic models for biological and ecological invasion. We numerically investigate the nonlinear stability of shock-fronted travelling waves arising in these RND PDEs, in the presence of a fourth-order spatial derivative multiplied by a small parameter ɛ that models high-order regularization. Once we have verified sectoriality of our linear operator, our task is reduced to checking spectral stability of our family of travelling waves. Motivated by the authors’ recent stability analysis of shock-fronted travelling waves under viscous relaxation, our numerical analysis suggests that near the singular limit, the associated eigenvalue problem for the linearized operator admits a fast–slow decomposition similar to that constructed by Alexander, Gardner, and Jones in the early 90s. In particular, our numerical results suggest a reduction of the complex four-dimensional eigenvalue problem into a real one-dimensional problem defined along the slow manifolds; i.e. slow eigenvalues defined near the tails of the shock-fronted wave for ɛ=0 govern the point spectrum of the linearized operator when 0<ɛ≪1.
•Nonlinear stability of shock-fronted travelling waves in regularized RND PDEs.•Geometric Riccati–Evans function analysis of the spectral problem.•Fast–slow subbundle theory explains spectral stability calculations. |
|---|---|
| AbstractList | Reaction-nonlinear diffusion PDEs can be derived as continuum limits of stochastic models for biological and ecological invasion. We numerically investigate the nonlinear stability of shock-fronted travelling waves arising in these RND PDEs, in the presence of a fourth-order spatial derivative multiplied by a small parameter ɛ that models high-order regularization. Once we have verified sectoriality of our linear operator, our task is reduced to checking spectral stability of our family of travelling waves. Motivated by the authors’ recent stability analysis of shock-fronted travelling waves under viscous relaxation, our numerical analysis suggests that near the singular limit, the associated eigenvalue problem for the linearized operator admits a fast–slow decomposition similar to that constructed by Alexander, Gardner, and Jones in the early 90s. In particular, our numerical results suggest a reduction of the complex four-dimensional eigenvalue problem into a real one-dimensional problem defined along the slow manifolds; i.e. slow eigenvalues defined near the tails of the shock-fronted wave for ɛ=0 govern the point spectrum of the linearized operator when 0<ɛ≪1.
•Nonlinear stability of shock-fronted travelling waves in regularized RND PDEs.•Geometric Riccati–Evans function analysis of the spectral problem.•Fast–slow subbundle theory explains spectral stability calculations. |
| ArticleNumber | 134069 |
| Author | Lizarraga, Ian Marangell, Robert |
| Author_xml | – sequence: 1 givenname: Ian surname: Lizarraga fullname: Lizarraga, Ian email: ian.lizarraga@sydney.edu.au – sequence: 2 givenname: Robert surname: Marangell fullname: Marangell, Robert email: robert.marangell@sydney.edu.au |
| BookMark | eNqFkLtOAzEQRS0UJJLAF9D4B3bxY58FBYqAIEXQQG157TFxWOxgO0H5ezYJoqCAakYz94zu3AkaOe8AoUtKckpodbXK18td1DkjrMgpL0jVnqAxbWqWNYSxERoPqjpjddOeoUmMK0IIrXk9RuLRu946kAHHJDvb27TD3uC49OotM8G7BBqnILfQD7pX_Dl0EVuHA0iVrHeZ-7mgrTGbOMwwfGzkfhnP0amRfYSL7zpFL3e3z7N5tni6f5jdLDLFiyZlsqTQqa6oqYGaVKrRRVdxxZkqSkMlaUhngFTQlWWpG6JYyThXBqBV2nSV5FPUHu-q4GMMYISy6WBh8G57QYnYJyVW4pCU2CcljkkNLP_FroN9l2H3D3V9pGB4a2shiKgsOAXaBlBJaG__5L8AFbmJnA |
| CitedBy_id | crossref_primary_10_1111_sapm_12755 crossref_primary_10_1142_S0219887825500483 |
| Cites_doi | 10.1137/15M1007264 10.1007/s00285-008-0197-8 10.1090/S0002-9947-1983-0697076-8 10.1090/S0002-9947-1991-1013331-0 10.1090/S0025-5718-10-02323-9 10.1016/0022-0396(79)90152-9 10.1090/S0002-9947-1984-0760971-6 10.1137/080741999 10.1006/jdeq.1994.1025 10.1016/S1874-575X(02)80039-X 10.1007/s00285-020-01547-1 10.1002/sapm1996973277 10.1016/j.physa.2009.12.010 10.1007/s00205-009-0272-3 10.1016/j.physd.2021.132916 10.1016/j.physa.2010.05.020 10.1137/19M1259705 10.1016/0893-9659(95)00062-U |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.physd.2024.134069 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1872-8022 |
| ExternalDocumentID | 10_1016_j_physd_2024_134069 S0167278924000204 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABMAC ABMYL ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEKER AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W K-O KOM M38 M41 MHUIS MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSW SSZ T5K TN5 TWZ WUQ XJT XPP YNT YYP ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO ADVLN AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c348t-a51ebcb471fe706c8d4b63c32c45f1a080bfe06eb555d80c25233cfee9cdfb6a3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001177544800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-2789 |
| IngestDate | Tue Nov 18 22:22:20 EST 2025 Sat Nov 29 07:23:36 EST 2025 Sat Mar 16 16:12:48 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Geometric singular perturbation theory Riccati–Evans functions Stability theory for travelling waves Shock-fronted travelling waves |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-a51ebcb471fe706c8d4b63c32c45f1a080bfe06eb555d80c25233cfee9cdfb6a3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.physd.2024.134069 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_physd_2024_134069 crossref_primary_10_1016_j_physd_2024_134069 elsevier_sciencedirect_doi_10_1016_j_physd_2024_134069 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Physica. D |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Harley, van Heijster, Marangell, Pettet, Roberts, Wechselberger (b16) 2020; 80 Pego (b6) 1989; 422 Höllig (b5) 1983 Bronwyn Bradshaw-Hajek, Ian Lizarraga, Robert Marangell, Martin Wechselberger, A geometric singular perturbation analysis of regularised reaction-nonlinear diffusion models including shocks, in: Proceedings of 47th Sapporo Symposium on Partial Differential Equations, 2022, pp. 53–64. Sandstede (b14) 2002 Strogatz (b26) 2015 Witelski (b7) 1995; 8 Simpson, Landman, Hughes (b2) 2010; 389 Atiyah (b31) 1967 Jones, Kopell (b33) 1994 Li, van Heijster, Marangell, Simpson (b4) 2020; 81 Kato (b28) 1976; vol. 132 Jones (b20) 1984; 286 de Rijk, Doelman, Rademacher (b21) 2016; 48 Guckenheimer, Kuehn (b15) 2009; 8 Johnston, Baker, McElwain, Simpson (b1) 2017; 7 Jones (b23) 2015 Simpson, Landman, Hughes, Fernando (b3) 2010; 389 Tucker (b35) 2011 Szmolyan, Freistühler (b34) 2010; 195 Kapitula, Promislow (b13) 2013; vol. 185 Hatcher (b32) 2017 Henry (b27) 1981 Gardner, Jones (b19) 1991; 327 Witelski (b8) 1996; 97 Ledoux, Malham, Thümmler (b17) 2010; 79 Jones, Tin (b29) 2009 Lizarraga, Marangell (b10) 2022 Kuehn (b24) 2015 Anguige, Schmeiser (b12) 2008; 58 Alexander, Gardner, Jones (b18) 1990; 410 Li, van Heijster, Simpson, Wechselberger (b11) 2021; 423 Bourbaki (b30) 1989 Dumortier, Roussarie (b25) 1996; 121 Fenichel (b22) 1979; 31 Witelski (10.1016/j.physd.2024.134069_b7) 1995; 8 Alexander (10.1016/j.physd.2024.134069_b18) 1990; 410 Hatcher (10.1016/j.physd.2024.134069_b32) 2017 10.1016/j.physd.2024.134069_b9 Kuehn (10.1016/j.physd.2024.134069_b24) 2015 Jones (10.1016/j.physd.2024.134069_b33) 1994 Gardner (10.1016/j.physd.2024.134069_b19) 1991; 327 Kapitula (10.1016/j.physd.2024.134069_b13) 2013; vol. 185 Johnston (10.1016/j.physd.2024.134069_b1) 2017; 7 Simpson (10.1016/j.physd.2024.134069_b2) 2010; 389 Sandstede (10.1016/j.physd.2024.134069_b14) 2002 Tucker (10.1016/j.physd.2024.134069_b35) 2011 Henry (10.1016/j.physd.2024.134069_b27) 1981 Li (10.1016/j.physd.2024.134069_b11) 2021; 423 Fenichel (10.1016/j.physd.2024.134069_b22) 1979; 31 Strogatz (10.1016/j.physd.2024.134069_b26) 2015 Guckenheimer (10.1016/j.physd.2024.134069_b15) 2009; 8 Kato (10.1016/j.physd.2024.134069_b28) 1976; vol. 132 Szmolyan (10.1016/j.physd.2024.134069_b34) 2010; 195 Witelski (10.1016/j.physd.2024.134069_b8) 1996; 97 Jones (10.1016/j.physd.2024.134069_b29) 2009 Anguige (10.1016/j.physd.2024.134069_b12) 2008; 58 Bourbaki (10.1016/j.physd.2024.134069_b30) 1989 Pego (10.1016/j.physd.2024.134069_b6) 1989; 422 Jones (10.1016/j.physd.2024.134069_b23) 2015 Lizarraga (10.1016/j.physd.2024.134069_b10) 2022 Ledoux (10.1016/j.physd.2024.134069_b17) 2010; 79 Atiyah (10.1016/j.physd.2024.134069_b31) 1967 Höllig (10.1016/j.physd.2024.134069_b5) 1983 de Rijk (10.1016/j.physd.2024.134069_b21) 2016; 48 Li (10.1016/j.physd.2024.134069_b4) 2020; 81 Jones (10.1016/j.physd.2024.134069_b20) 1984; 286 Harley (10.1016/j.physd.2024.134069_b16) 2020; 80 Dumortier (10.1016/j.physd.2024.134069_b25) 1996; 121 Simpson (10.1016/j.physd.2024.134069_b3) 2010; 389 |
| References_xml | – year: 1981 ident: b27 publication-title: Geometric Theory of Semilinear Parabolic Equations – volume: 410 start-page: 167 year: 1990 end-page: 212 ident: b18 article-title: A topological invariant arising in the stability analysis of travelling waves publication-title: J. Reine Angew. Math. – volume: 81 start-page: 1495 year: 2020 end-page: 1522 ident: b4 article-title: Travelling wave solutions in a negative nonlinear diffusion–reaction model publication-title: J. Math. Biol. – year: 2015 ident: b23 article-title: Geometric Singular Perturbation Theory, Lecture Notes in Mathematics, Dynamical Systems (Montecatini Terme) – volume: 79 start-page: 1585 year: 2010 end-page: 1619 ident: b17 article-title: Grassmannian spectral shooting publication-title: Math. Comp. – volume: 286 start-page: 431 year: 1984 end-page: 469 ident: b20 article-title: Stability of the travelling wave solution of the Fitzhugh–Nagumo system publication-title: Trans. AMS – start-page: 70 year: 2022 ident: b10 article-title: Spectral stability of shock-fronted travelling waves under viscous relaxation in review – volume: 80 start-page: 1629 year: 2020 end-page: 1653 ident: b16 article-title: (In)stability of travelling waves in a model of haptotaxis publication-title: SIAM J. Appl. Math. – volume: 121 start-page: 457 year: 1996 end-page: 490 ident: b25 article-title: Canard cycles and center manifolds publication-title: Mem. Amer. Math. Soc. – volume: 7 start-page: 42134 year: 2017 ident: b1 article-title: Co-operation, competition and crowding: A discrete framework linking allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves publication-title: Nat. Sci. Rep. – volume: 58 start-page: 395 year: 2008 end-page: 427 ident: b12 article-title: A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion publication-title: J. Math. Biol. – volume: 8 start-page: 854 year: 2009 end-page: 879 ident: b15 article-title: Computing slow manifolds of saddle type publication-title: SIADS – start-page: 64 year: 1994 end-page: 88 ident: b33 article-title: Tracking invariant manifolds with differential forms in singularly perturbed systems publication-title: J. Differential Equations – volume: 31 start-page: 53 year: 1979 end-page: 98 ident: b22 article-title: Geometric singular perturbation theory for ordinary differential equations publication-title: J. Differential Equations – year: 2017 ident: b32 article-title: Vector bundles and K-theory – volume: 8 start-page: 27 year: 1995 end-page: 32 ident: b7 article-title: Shocks in nonlinear diffusion publication-title: Appl. Math. Lett. – reference: Bronwyn Bradshaw-Hajek, Ian Lizarraga, Robert Marangell, Martin Wechselberger, A geometric singular perturbation analysis of regularised reaction-nonlinear diffusion models including shocks, in: Proceedings of 47th Sapporo Symposium on Partial Differential Equations, 2022, pp. 53–64. – volume: 327 start-page: 465 year: 1991 end-page: 524 ident: b19 article-title: Stability of travelling wave solutions of diffusive predator-prey systems publication-title: Trans. AMS – year: 1989 ident: b30 article-title: Algebra I – volume: 97 start-page: 277 year: 1996 end-page: 300 ident: b8 article-title: The structure of internal layers for unstable nonlinear diffusion equations publication-title: Stud. Appl. Math. – volume: 423 year: 2021 ident: b11 article-title: Shock-fronted travelling waves in a reaction–diffusion model with nonlinear forward–backward-forward diffusion publication-title: Physica D – volume: 195 start-page: 353 year: 2010 end-page: 373 ident: b34 article-title: Spectral stability of small-amplitude viscous shock waves in several space dimensions publication-title: Arch. Ration. Mech. Anal. – start-page: 983 year: 2002 end-page: 1055 ident: b14 article-title: Stability of travelling waves publication-title: Handbook of Dynamical Systems II – year: 2015 ident: b26 article-title: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering – year: 1967 ident: b31 article-title: K-Theory – volume: 389 start-page: 3779 year: 2010 end-page: 3790 ident: b2 article-title: Cell invasion with proliferation mechanisms motivated by time-lapse data publication-title: Physica A – year: 2011 ident: b35 article-title: Validated Numerics: A Short Introduction to Rigorous Computations – start-page: 967 year: 2009 end-page: 1023 ident: b29 article-title: Generalized exchange lemmas and orbits heteroclinic to invariant manifolds publication-title: DCDS-S – volume: vol. 132 year: 1976 ident: b28 publication-title: Perturbation Theory for Linear Operators – volume: 389 start-page: 1412 year: 2010 end-page: 1424 ident: b3 article-title: A model for mesoscale patterns in motile populations publication-title: Physica A – volume: vol. 185 year: 2013 ident: b13 publication-title: Spectral and Dynamical Stability of Nonlinear Waves – volume: 422 start-page: 261 year: 1989 end-page: 278 ident: b6 article-title: Front migration in the nonlinear cahn-hilliard equation publication-title: Proc. R. Soc. A – year: 2015 ident: b24 article-title: Multiple Time Scale Dynamics – volume: 48 start-page: 61 year: 2016 end-page: 121 ident: b21 article-title: Spectra and stability of spatially periodic pulse patterns: Evans function factorization via Riccati transformation publication-title: SIAM J. Math. Anal. – start-page: 299 year: 1983 end-page: 316 ident: b5 article-title: Existence of infinitely many solutions for a forward backward heat equation publication-title: Trans. AMS – volume: 48 start-page: 61 year: 2016 ident: 10.1016/j.physd.2024.134069_b21 article-title: Spectra and stability of spatially periodic pulse patterns: Evans function factorization via Riccati transformation publication-title: SIAM J. Math. Anal. doi: 10.1137/15M1007264 – volume: 410 start-page: 167 year: 1990 ident: 10.1016/j.physd.2024.134069_b18 article-title: A topological invariant arising in the stability analysis of travelling waves publication-title: J. Reine Angew. Math. – year: 2015 ident: 10.1016/j.physd.2024.134069_b23 – volume: 7 start-page: 42134 year: 2017 ident: 10.1016/j.physd.2024.134069_b1 article-title: Co-operation, competition and crowding: A discrete framework linking allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves publication-title: Nat. Sci. Rep. – volume: 422 start-page: 261 year: 1989 ident: 10.1016/j.physd.2024.134069_b6 article-title: Front migration in the nonlinear cahn-hilliard equation publication-title: Proc. R. Soc. A – volume: 58 start-page: 395 issue: 3 year: 2008 ident: 10.1016/j.physd.2024.134069_b12 article-title: A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion publication-title: J. Math. Biol. doi: 10.1007/s00285-008-0197-8 – start-page: 70 year: 2022 ident: 10.1016/j.physd.2024.134069_b10 – year: 2015 ident: 10.1016/j.physd.2024.134069_b24 – year: 1989 ident: 10.1016/j.physd.2024.134069_b30 – start-page: 299 year: 1983 ident: 10.1016/j.physd.2024.134069_b5 article-title: Existence of infinitely many solutions for a forward backward heat equation publication-title: Trans. AMS doi: 10.1090/S0002-9947-1983-0697076-8 – volume: 327 start-page: 465 year: 1991 ident: 10.1016/j.physd.2024.134069_b19 article-title: Stability of travelling wave solutions of diffusive predator-prey systems publication-title: Trans. AMS doi: 10.1090/S0002-9947-1991-1013331-0 – volume: 79 start-page: 1585 year: 2010 ident: 10.1016/j.physd.2024.134069_b17 article-title: Grassmannian spectral shooting publication-title: Math. Comp. doi: 10.1090/S0025-5718-10-02323-9 – volume: 31 start-page: 53 year: 1979 ident: 10.1016/j.physd.2024.134069_b22 article-title: Geometric singular perturbation theory for ordinary differential equations publication-title: J. Differential Equations doi: 10.1016/0022-0396(79)90152-9 – volume: 286 start-page: 431 year: 1984 ident: 10.1016/j.physd.2024.134069_b20 article-title: Stability of the travelling wave solution of the Fitzhugh–Nagumo system publication-title: Trans. AMS doi: 10.1090/S0002-9947-1984-0760971-6 – start-page: 967 year: 2009 ident: 10.1016/j.physd.2024.134069_b29 article-title: Generalized exchange lemmas and orbits heteroclinic to invariant manifolds – volume: 8 start-page: 854 issue: 3 year: 2009 ident: 10.1016/j.physd.2024.134069_b15 article-title: Computing slow manifolds of saddle type publication-title: SIADS doi: 10.1137/080741999 – start-page: 64 year: 1994 ident: 10.1016/j.physd.2024.134069_b33 article-title: Tracking invariant manifolds with differential forms in singularly perturbed systems publication-title: J. Differential Equations doi: 10.1006/jdeq.1994.1025 – volume: vol. 132 year: 1976 ident: 10.1016/j.physd.2024.134069_b28 – volume: vol. 185 year: 2013 ident: 10.1016/j.physd.2024.134069_b13 – ident: 10.1016/j.physd.2024.134069_b9 – start-page: 983 year: 2002 ident: 10.1016/j.physd.2024.134069_b14 article-title: Stability of travelling waves doi: 10.1016/S1874-575X(02)80039-X – year: 1967 ident: 10.1016/j.physd.2024.134069_b31 – year: 2011 ident: 10.1016/j.physd.2024.134069_b35 – volume: 81 start-page: 1495 year: 2020 ident: 10.1016/j.physd.2024.134069_b4 article-title: Travelling wave solutions in a negative nonlinear diffusion–reaction model publication-title: J. Math. Biol. doi: 10.1007/s00285-020-01547-1 – volume: 97 start-page: 277 year: 1996 ident: 10.1016/j.physd.2024.134069_b8 article-title: The structure of internal layers for unstable nonlinear diffusion equations publication-title: Stud. Appl. Math. doi: 10.1002/sapm1996973277 – year: 2017 ident: 10.1016/j.physd.2024.134069_b32 – year: 2015 ident: 10.1016/j.physd.2024.134069_b26 – volume: 389 start-page: 1412 year: 2010 ident: 10.1016/j.physd.2024.134069_b3 article-title: A model for mesoscale patterns in motile populations publication-title: Physica A doi: 10.1016/j.physa.2009.12.010 – volume: 121 start-page: 457 year: 1996 ident: 10.1016/j.physd.2024.134069_b25 article-title: Canard cycles and center manifolds publication-title: Mem. Amer. Math. Soc. – year: 1981 ident: 10.1016/j.physd.2024.134069_b27 – volume: 195 start-page: 353 issue: 2 year: 2010 ident: 10.1016/j.physd.2024.134069_b34 article-title: Spectral stability of small-amplitude viscous shock waves in several space dimensions publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-009-0272-3 – volume: 423 year: 2021 ident: 10.1016/j.physd.2024.134069_b11 article-title: Shock-fronted travelling waves in a reaction–diffusion model with nonlinear forward–backward-forward diffusion publication-title: Physica D doi: 10.1016/j.physd.2021.132916 – volume: 389 start-page: 3779 year: 2010 ident: 10.1016/j.physd.2024.134069_b2 article-title: Cell invasion with proliferation mechanisms motivated by time-lapse data publication-title: Physica A doi: 10.1016/j.physa.2010.05.020 – volume: 80 start-page: 1629 year: 2020 ident: 10.1016/j.physd.2024.134069_b16 article-title: (In)stability of travelling waves in a model of haptotaxis publication-title: SIAM J. Appl. Math. doi: 10.1137/19M1259705 – volume: 8 start-page: 27 year: 1995 ident: 10.1016/j.physd.2024.134069_b7 article-title: Shocks in nonlinear diffusion publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(95)00062-U |
| SSID | ssj0001737 |
| Score | 2.4487612 |
| Snippet | Reaction-nonlinear diffusion PDEs can be derived as continuum limits of stochastic models for biological and ecological invasion. We numerically investigate... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 134069 |
| SubjectTerms | Geometric singular perturbation theory Riccati–Evans functions Shock-fronted travelling waves Stability theory for travelling waves |
| Title | Nonlinear stability of shock-fronted travelling waves in reaction-nonlinear diffusion equations |
| URI | https://dx.doi.org/10.1016/j.physd.2024.134069 |
| Volume | 460 |
| WOSCitedRecordID | wos001177544800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8022 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001737 issn: 0167-2789 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVgCxIcKiggSgH5wK1ktYm_sseqKmoRrHoo0t4i27HFVlUo2d1S8esZf8RJabWiBy6RFcWTKM-aTMYz7yH0YULAH-Zu211pllEhuBNyrzNCBZecabdV5sUmxGxWzufT06jfufRyAqJpyuvr6eV_hRrOAdiudfYecCejcALGADocAXY4_hPws0B-IVuXJvClr34TffkdPF9mHV8BxJgrpzoU6Lh_yStflLUP4aNvcsiaZMHJp6xdPm3f_FwPcnsxmj0NII_7suEvi9-ybWXI1p70K--rbF0XQ9jjCNXcw3xDMSxTiSlIcK2uf3boQ2kQBYheMCeun_ZOBx1yBedjl7dxRK0FHfdX36TD_uszlYoHu7q088obqZyRKhh5iLYKwablCG0dnBzNP6dvci4Ce2r37B3_lK_0u_Usd8cog7jj7Bnajj8M-CAA_Rw9MM0OejqgkdxBjwMOyxeoSuDjBD7-YfEN8HEPPvbg40WDb4OPE_g4gf8Sfft0dHZ4nEUJjUwTWq4yyXKjtIIIxBox4bqsqeJEk0JTZnMJvwvKmgk3ijFWlxNdsIIQbY2Z6toqLskrNIL7mtcIq8JIy52AnKCUMqFqCUOlrdKS2zLfRUX30iod-eWdzMlFtQGwXfQxTboM9CqbL-cdGlWMEEPkV8H62jTxzf3us4ee9Ev_LRqt2rV5hx7pq9Vi2b6Pi-sPtbOMBw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+stability+of+shock-fronted+travelling+waves+in+reaction-nonlinear+diffusion+equations&rft.jtitle=Physica.+D&rft.au=Lizarraga%2C+Ian&rft.au=Marangell%2C+Robert&rft.date=2024-04-01&rft.issn=0167-2789&rft.volume=460&rft.spage=134069&rft_id=info:doi/10.1016%2Fj.physd.2024.134069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physd_2024_134069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon |