Nonlinear stability of shock-fronted travelling waves in reaction-nonlinear diffusion equations

Reaction-nonlinear diffusion PDEs can be derived as continuum limits of stochastic models for biological and ecological invasion. We numerically investigate the nonlinear stability of shock-fronted travelling waves arising in these RND PDEs, in the presence of a fourth-order spatial derivative multi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physica. D Ročník 460; s. 134069
Hlavní autori: Lizarraga, Ian, Marangell, Robert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.2024
Predmet:
ISSN:0167-2789, 1872-8022
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reaction-nonlinear diffusion PDEs can be derived as continuum limits of stochastic models for biological and ecological invasion. We numerically investigate the nonlinear stability of shock-fronted travelling waves arising in these RND PDEs, in the presence of a fourth-order spatial derivative multiplied by a small parameter ɛ that models high-order regularization. Once we have verified sectoriality of our linear operator, our task is reduced to checking spectral stability of our family of travelling waves. Motivated by the authors’ recent stability analysis of shock-fronted travelling waves under viscous relaxation, our numerical analysis suggests that near the singular limit, the associated eigenvalue problem for the linearized operator admits a fast–slow decomposition similar to that constructed by Alexander, Gardner, and Jones in the early 90s. In particular, our numerical results suggest a reduction of the complex four-dimensional eigenvalue problem into a real one-dimensional problem defined along the slow manifolds; i.e. slow eigenvalues defined near the tails of the shock-fronted wave for ɛ=0 govern the point spectrum of the linearized operator when 0<ɛ≪1. •Nonlinear stability of shock-fronted travelling waves in regularized RND PDEs.•Geometric Riccati–Evans function analysis of the spectral problem.•Fast–slow subbundle theory explains spectral stability calculations.
AbstractList Reaction-nonlinear diffusion PDEs can be derived as continuum limits of stochastic models for biological and ecological invasion. We numerically investigate the nonlinear stability of shock-fronted travelling waves arising in these RND PDEs, in the presence of a fourth-order spatial derivative multiplied by a small parameter ɛ that models high-order regularization. Once we have verified sectoriality of our linear operator, our task is reduced to checking spectral stability of our family of travelling waves. Motivated by the authors’ recent stability analysis of shock-fronted travelling waves under viscous relaxation, our numerical analysis suggests that near the singular limit, the associated eigenvalue problem for the linearized operator admits a fast–slow decomposition similar to that constructed by Alexander, Gardner, and Jones in the early 90s. In particular, our numerical results suggest a reduction of the complex four-dimensional eigenvalue problem into a real one-dimensional problem defined along the slow manifolds; i.e. slow eigenvalues defined near the tails of the shock-fronted wave for ɛ=0 govern the point spectrum of the linearized operator when 0<ɛ≪1. •Nonlinear stability of shock-fronted travelling waves in regularized RND PDEs.•Geometric Riccati–Evans function analysis of the spectral problem.•Fast–slow subbundle theory explains spectral stability calculations.
ArticleNumber 134069
Author Lizarraga, Ian
Marangell, Robert
Author_xml – sequence: 1
  givenname: Ian
  surname: Lizarraga
  fullname: Lizarraga, Ian
  email: ian.lizarraga@sydney.edu.au
– sequence: 2
  givenname: Robert
  surname: Marangell
  fullname: Marangell, Robert
  email: robert.marangell@sydney.edu.au
BookMark eNqFkLtOAzEQRS0UJJLAF9D4B3bxY58FBYqAIEXQQG157TFxWOxgO0H5ezYJoqCAakYz94zu3AkaOe8AoUtKckpodbXK18td1DkjrMgpL0jVnqAxbWqWNYSxERoPqjpjddOeoUmMK0IIrXk9RuLRu946kAHHJDvb27TD3uC49OotM8G7BBqnILfQD7pX_Dl0EVuHA0iVrHeZ-7mgrTGbOMwwfGzkfhnP0amRfYSL7zpFL3e3z7N5tni6f5jdLDLFiyZlsqTQqa6oqYGaVKrRRVdxxZkqSkMlaUhngFTQlWWpG6JYyThXBqBV2nSV5FPUHu-q4GMMYISy6WBh8G57QYnYJyVW4pCU2CcljkkNLP_FroN9l2H3D3V9pGB4a2shiKgsOAXaBlBJaG__5L8AFbmJnA
CitedBy_id crossref_primary_10_1111_sapm_12755
crossref_primary_10_1142_S0219887825500483
Cites_doi 10.1137/15M1007264
10.1007/s00285-008-0197-8
10.1090/S0002-9947-1983-0697076-8
10.1090/S0002-9947-1991-1013331-0
10.1090/S0025-5718-10-02323-9
10.1016/0022-0396(79)90152-9
10.1090/S0002-9947-1984-0760971-6
10.1137/080741999
10.1006/jdeq.1994.1025
10.1016/S1874-575X(02)80039-X
10.1007/s00285-020-01547-1
10.1002/sapm1996973277
10.1016/j.physa.2009.12.010
10.1007/s00205-009-0272-3
10.1016/j.physd.2021.132916
10.1016/j.physa.2010.05.020
10.1137/19M1259705
10.1016/0893-9659(95)00062-U
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.physd.2024.134069
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
ExternalDocumentID 10_1016_j_physd_2024_134069
S0167278924000204
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABMYL
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c348t-a51ebcb471fe706c8d4b63c32c45f1a080bfe06eb555d80c25233cfee9cdfb6a3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001177544800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-2789
IngestDate Tue Nov 18 22:22:20 EST 2025
Sat Nov 29 07:23:36 EST 2025
Sat Mar 16 16:12:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Geometric singular perturbation theory
Riccati–Evans functions
Stability theory for travelling waves
Shock-fronted travelling waves
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-a51ebcb471fe706c8d4b63c32c45f1a080bfe06eb555d80c25233cfee9cdfb6a3
OpenAccessLink https://dx.doi.org/10.1016/j.physd.2024.134069
ParticipantIDs crossref_citationtrail_10_1016_j_physd_2024_134069
crossref_primary_10_1016_j_physd_2024_134069
elsevier_sciencedirect_doi_10_1016_j_physd_2024_134069
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Physica. D
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Harley, van Heijster, Marangell, Pettet, Roberts, Wechselberger (b16) 2020; 80
Pego (b6) 1989; 422
Höllig (b5) 1983
Bronwyn Bradshaw-Hajek, Ian Lizarraga, Robert Marangell, Martin Wechselberger, A geometric singular perturbation analysis of regularised reaction-nonlinear diffusion models including shocks, in: Proceedings of 47th Sapporo Symposium on Partial Differential Equations, 2022, pp. 53–64.
Sandstede (b14) 2002
Strogatz (b26) 2015
Witelski (b7) 1995; 8
Simpson, Landman, Hughes (b2) 2010; 389
Atiyah (b31) 1967
Jones, Kopell (b33) 1994
Li, van Heijster, Marangell, Simpson (b4) 2020; 81
Kato (b28) 1976; vol. 132
Jones (b20) 1984; 286
de Rijk, Doelman, Rademacher (b21) 2016; 48
Guckenheimer, Kuehn (b15) 2009; 8
Johnston, Baker, McElwain, Simpson (b1) 2017; 7
Jones (b23) 2015
Simpson, Landman, Hughes, Fernando (b3) 2010; 389
Tucker (b35) 2011
Szmolyan, Freistühler (b34) 2010; 195
Kapitula, Promislow (b13) 2013; vol. 185
Hatcher (b32) 2017
Henry (b27) 1981
Gardner, Jones (b19) 1991; 327
Witelski (b8) 1996; 97
Ledoux, Malham, Thümmler (b17) 2010; 79
Jones, Tin (b29) 2009
Lizarraga, Marangell (b10) 2022
Kuehn (b24) 2015
Anguige, Schmeiser (b12) 2008; 58
Alexander, Gardner, Jones (b18) 1990; 410
Li, van Heijster, Simpson, Wechselberger (b11) 2021; 423
Bourbaki (b30) 1989
Dumortier, Roussarie (b25) 1996; 121
Fenichel (b22) 1979; 31
Witelski (10.1016/j.physd.2024.134069_b7) 1995; 8
Alexander (10.1016/j.physd.2024.134069_b18) 1990; 410
Hatcher (10.1016/j.physd.2024.134069_b32) 2017
10.1016/j.physd.2024.134069_b9
Kuehn (10.1016/j.physd.2024.134069_b24) 2015
Jones (10.1016/j.physd.2024.134069_b33) 1994
Gardner (10.1016/j.physd.2024.134069_b19) 1991; 327
Kapitula (10.1016/j.physd.2024.134069_b13) 2013; vol. 185
Johnston (10.1016/j.physd.2024.134069_b1) 2017; 7
Simpson (10.1016/j.physd.2024.134069_b2) 2010; 389
Sandstede (10.1016/j.physd.2024.134069_b14) 2002
Tucker (10.1016/j.physd.2024.134069_b35) 2011
Henry (10.1016/j.physd.2024.134069_b27) 1981
Li (10.1016/j.physd.2024.134069_b11) 2021; 423
Fenichel (10.1016/j.physd.2024.134069_b22) 1979; 31
Strogatz (10.1016/j.physd.2024.134069_b26) 2015
Guckenheimer (10.1016/j.physd.2024.134069_b15) 2009; 8
Kato (10.1016/j.physd.2024.134069_b28) 1976; vol. 132
Szmolyan (10.1016/j.physd.2024.134069_b34) 2010; 195
Witelski (10.1016/j.physd.2024.134069_b8) 1996; 97
Jones (10.1016/j.physd.2024.134069_b29) 2009
Anguige (10.1016/j.physd.2024.134069_b12) 2008; 58
Bourbaki (10.1016/j.physd.2024.134069_b30) 1989
Pego (10.1016/j.physd.2024.134069_b6) 1989; 422
Jones (10.1016/j.physd.2024.134069_b23) 2015
Lizarraga (10.1016/j.physd.2024.134069_b10) 2022
Ledoux (10.1016/j.physd.2024.134069_b17) 2010; 79
Atiyah (10.1016/j.physd.2024.134069_b31) 1967
Höllig (10.1016/j.physd.2024.134069_b5) 1983
de Rijk (10.1016/j.physd.2024.134069_b21) 2016; 48
Li (10.1016/j.physd.2024.134069_b4) 2020; 81
Jones (10.1016/j.physd.2024.134069_b20) 1984; 286
Harley (10.1016/j.physd.2024.134069_b16) 2020; 80
Dumortier (10.1016/j.physd.2024.134069_b25) 1996; 121
Simpson (10.1016/j.physd.2024.134069_b3) 2010; 389
References_xml – year: 1981
  ident: b27
  publication-title: Geometric Theory of Semilinear Parabolic Equations
– volume: 410
  start-page: 167
  year: 1990
  end-page: 212
  ident: b18
  article-title: A topological invariant arising in the stability analysis of travelling waves
  publication-title: J. Reine Angew. Math.
– volume: 81
  start-page: 1495
  year: 2020
  end-page: 1522
  ident: b4
  article-title: Travelling wave solutions in a negative nonlinear diffusion–reaction model
  publication-title: J. Math. Biol.
– year: 2015
  ident: b23
  article-title: Geometric Singular Perturbation Theory, Lecture Notes in Mathematics, Dynamical Systems (Montecatini Terme)
– volume: 79
  start-page: 1585
  year: 2010
  end-page: 1619
  ident: b17
  article-title: Grassmannian spectral shooting
  publication-title: Math. Comp.
– volume: 286
  start-page: 431
  year: 1984
  end-page: 469
  ident: b20
  article-title: Stability of the travelling wave solution of the Fitzhugh–Nagumo system
  publication-title: Trans. AMS
– start-page: 70
  year: 2022
  ident: b10
  article-title: Spectral stability of shock-fronted travelling waves under viscous relaxation in review
– volume: 80
  start-page: 1629
  year: 2020
  end-page: 1653
  ident: b16
  article-title: (In)stability of travelling waves in a model of haptotaxis
  publication-title: SIAM J. Appl. Math.
– volume: 121
  start-page: 457
  year: 1996
  end-page: 490
  ident: b25
  article-title: Canard cycles and center manifolds
  publication-title: Mem. Amer. Math. Soc.
– volume: 7
  start-page: 42134
  year: 2017
  ident: b1
  article-title: Co-operation, competition and crowding: A discrete framework linking allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves
  publication-title: Nat. Sci. Rep.
– volume: 58
  start-page: 395
  year: 2008
  end-page: 427
  ident: b12
  article-title: A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion
  publication-title: J. Math. Biol.
– volume: 8
  start-page: 854
  year: 2009
  end-page: 879
  ident: b15
  article-title: Computing slow manifolds of saddle type
  publication-title: SIADS
– start-page: 64
  year: 1994
  end-page: 88
  ident: b33
  article-title: Tracking invariant manifolds with differential forms in singularly perturbed systems
  publication-title: J. Differential Equations
– volume: 31
  start-page: 53
  year: 1979
  end-page: 98
  ident: b22
  article-title: Geometric singular perturbation theory for ordinary differential equations
  publication-title: J. Differential Equations
– year: 2017
  ident: b32
  article-title: Vector bundles and K-theory
– volume: 8
  start-page: 27
  year: 1995
  end-page: 32
  ident: b7
  article-title: Shocks in nonlinear diffusion
  publication-title: Appl. Math. Lett.
– reference: Bronwyn Bradshaw-Hajek, Ian Lizarraga, Robert Marangell, Martin Wechselberger, A geometric singular perturbation analysis of regularised reaction-nonlinear diffusion models including shocks, in: Proceedings of 47th Sapporo Symposium on Partial Differential Equations, 2022, pp. 53–64.
– volume: 327
  start-page: 465
  year: 1991
  end-page: 524
  ident: b19
  article-title: Stability of travelling wave solutions of diffusive predator-prey systems
  publication-title: Trans. AMS
– year: 1989
  ident: b30
  article-title: Algebra I
– volume: 97
  start-page: 277
  year: 1996
  end-page: 300
  ident: b8
  article-title: The structure of internal layers for unstable nonlinear diffusion equations
  publication-title: Stud. Appl. Math.
– volume: 423
  year: 2021
  ident: b11
  article-title: Shock-fronted travelling waves in a reaction–diffusion model with nonlinear forward–backward-forward diffusion
  publication-title: Physica D
– volume: 195
  start-page: 353
  year: 2010
  end-page: 373
  ident: b34
  article-title: Spectral stability of small-amplitude viscous shock waves in several space dimensions
  publication-title: Arch. Ration. Mech. Anal.
– start-page: 983
  year: 2002
  end-page: 1055
  ident: b14
  article-title: Stability of travelling waves
  publication-title: Handbook of Dynamical Systems II
– year: 2015
  ident: b26
  article-title: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering
– year: 1967
  ident: b31
  article-title: K-Theory
– volume: 389
  start-page: 3779
  year: 2010
  end-page: 3790
  ident: b2
  article-title: Cell invasion with proliferation mechanisms motivated by time-lapse data
  publication-title: Physica A
– year: 2011
  ident: b35
  article-title: Validated Numerics: A Short Introduction to Rigorous Computations
– start-page: 967
  year: 2009
  end-page: 1023
  ident: b29
  article-title: Generalized exchange lemmas and orbits heteroclinic to invariant manifolds
  publication-title: DCDS-S
– volume: vol. 132
  year: 1976
  ident: b28
  publication-title: Perturbation Theory for Linear Operators
– volume: 389
  start-page: 1412
  year: 2010
  end-page: 1424
  ident: b3
  article-title: A model for mesoscale patterns in motile populations
  publication-title: Physica A
– volume: vol. 185
  year: 2013
  ident: b13
  publication-title: Spectral and Dynamical Stability of Nonlinear Waves
– volume: 422
  start-page: 261
  year: 1989
  end-page: 278
  ident: b6
  article-title: Front migration in the nonlinear cahn-hilliard equation
  publication-title: Proc. R. Soc. A
– year: 2015
  ident: b24
  article-title: Multiple Time Scale Dynamics
– volume: 48
  start-page: 61
  year: 2016
  end-page: 121
  ident: b21
  article-title: Spectra and stability of spatially periodic pulse patterns: Evans function factorization via Riccati transformation
  publication-title: SIAM J. Math. Anal.
– start-page: 299
  year: 1983
  end-page: 316
  ident: b5
  article-title: Existence of infinitely many solutions for a forward backward heat equation
  publication-title: Trans. AMS
– volume: 48
  start-page: 61
  year: 2016
  ident: 10.1016/j.physd.2024.134069_b21
  article-title: Spectra and stability of spatially periodic pulse patterns: Evans function factorization via Riccati transformation
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/15M1007264
– volume: 410
  start-page: 167
  year: 1990
  ident: 10.1016/j.physd.2024.134069_b18
  article-title: A topological invariant arising in the stability analysis of travelling waves
  publication-title: J. Reine Angew. Math.
– year: 2015
  ident: 10.1016/j.physd.2024.134069_b23
– volume: 7
  start-page: 42134
  year: 2017
  ident: 10.1016/j.physd.2024.134069_b1
  article-title: Co-operation, competition and crowding: A discrete framework linking allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves
  publication-title: Nat. Sci. Rep.
– volume: 422
  start-page: 261
  year: 1989
  ident: 10.1016/j.physd.2024.134069_b6
  article-title: Front migration in the nonlinear cahn-hilliard equation
  publication-title: Proc. R. Soc. A
– volume: 58
  start-page: 395
  issue: 3
  year: 2008
  ident: 10.1016/j.physd.2024.134069_b12
  article-title: A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-008-0197-8
– start-page: 70
  year: 2022
  ident: 10.1016/j.physd.2024.134069_b10
– year: 2015
  ident: 10.1016/j.physd.2024.134069_b24
– year: 1989
  ident: 10.1016/j.physd.2024.134069_b30
– start-page: 299
  year: 1983
  ident: 10.1016/j.physd.2024.134069_b5
  article-title: Existence of infinitely many solutions for a forward backward heat equation
  publication-title: Trans. AMS
  doi: 10.1090/S0002-9947-1983-0697076-8
– volume: 327
  start-page: 465
  year: 1991
  ident: 10.1016/j.physd.2024.134069_b19
  article-title: Stability of travelling wave solutions of diffusive predator-prey systems
  publication-title: Trans. AMS
  doi: 10.1090/S0002-9947-1991-1013331-0
– volume: 79
  start-page: 1585
  year: 2010
  ident: 10.1016/j.physd.2024.134069_b17
  article-title: Grassmannian spectral shooting
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-10-02323-9
– volume: 31
  start-page: 53
  year: 1979
  ident: 10.1016/j.physd.2024.134069_b22
  article-title: Geometric singular perturbation theory for ordinary differential equations
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(79)90152-9
– volume: 286
  start-page: 431
  year: 1984
  ident: 10.1016/j.physd.2024.134069_b20
  article-title: Stability of the travelling wave solution of the Fitzhugh–Nagumo system
  publication-title: Trans. AMS
  doi: 10.1090/S0002-9947-1984-0760971-6
– start-page: 967
  year: 2009
  ident: 10.1016/j.physd.2024.134069_b29
  article-title: Generalized exchange lemmas and orbits heteroclinic to invariant manifolds
– volume: 8
  start-page: 854
  issue: 3
  year: 2009
  ident: 10.1016/j.physd.2024.134069_b15
  article-title: Computing slow manifolds of saddle type
  publication-title: SIADS
  doi: 10.1137/080741999
– start-page: 64
  year: 1994
  ident: 10.1016/j.physd.2024.134069_b33
  article-title: Tracking invariant manifolds with differential forms in singularly perturbed systems
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1994.1025
– volume: vol. 132
  year: 1976
  ident: 10.1016/j.physd.2024.134069_b28
– volume: vol. 185
  year: 2013
  ident: 10.1016/j.physd.2024.134069_b13
– ident: 10.1016/j.physd.2024.134069_b9
– start-page: 983
  year: 2002
  ident: 10.1016/j.physd.2024.134069_b14
  article-title: Stability of travelling waves
  doi: 10.1016/S1874-575X(02)80039-X
– year: 1967
  ident: 10.1016/j.physd.2024.134069_b31
– year: 2011
  ident: 10.1016/j.physd.2024.134069_b35
– volume: 81
  start-page: 1495
  year: 2020
  ident: 10.1016/j.physd.2024.134069_b4
  article-title: Travelling wave solutions in a negative nonlinear diffusion–reaction model
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-020-01547-1
– volume: 97
  start-page: 277
  year: 1996
  ident: 10.1016/j.physd.2024.134069_b8
  article-title: The structure of internal layers for unstable nonlinear diffusion equations
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm1996973277
– year: 2017
  ident: 10.1016/j.physd.2024.134069_b32
– year: 2015
  ident: 10.1016/j.physd.2024.134069_b26
– volume: 389
  start-page: 1412
  year: 2010
  ident: 10.1016/j.physd.2024.134069_b3
  article-title: A model for mesoscale patterns in motile populations
  publication-title: Physica A
  doi: 10.1016/j.physa.2009.12.010
– volume: 121
  start-page: 457
  year: 1996
  ident: 10.1016/j.physd.2024.134069_b25
  article-title: Canard cycles and center manifolds
  publication-title: Mem. Amer. Math. Soc.
– year: 1981
  ident: 10.1016/j.physd.2024.134069_b27
– volume: 195
  start-page: 353
  issue: 2
  year: 2010
  ident: 10.1016/j.physd.2024.134069_b34
  article-title: Spectral stability of small-amplitude viscous shock waves in several space dimensions
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-009-0272-3
– volume: 423
  year: 2021
  ident: 10.1016/j.physd.2024.134069_b11
  article-title: Shock-fronted travelling waves in a reaction–diffusion model with nonlinear forward–backward-forward diffusion
  publication-title: Physica D
  doi: 10.1016/j.physd.2021.132916
– volume: 389
  start-page: 3779
  year: 2010
  ident: 10.1016/j.physd.2024.134069_b2
  article-title: Cell invasion with proliferation mechanisms motivated by time-lapse data
  publication-title: Physica A
  doi: 10.1016/j.physa.2010.05.020
– volume: 80
  start-page: 1629
  year: 2020
  ident: 10.1016/j.physd.2024.134069_b16
  article-title: (In)stability of travelling waves in a model of haptotaxis
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/19M1259705
– volume: 8
  start-page: 27
  year: 1995
  ident: 10.1016/j.physd.2024.134069_b7
  article-title: Shocks in nonlinear diffusion
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(95)00062-U
SSID ssj0001737
Score 2.4487612
Snippet Reaction-nonlinear diffusion PDEs can be derived as continuum limits of stochastic models for biological and ecological invasion. We numerically investigate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 134069
SubjectTerms Geometric singular perturbation theory
Riccati–Evans functions
Shock-fronted travelling waves
Stability theory for travelling waves
Title Nonlinear stability of shock-fronted travelling waves in reaction-nonlinear diffusion equations
URI https://dx.doi.org/10.1016/j.physd.2024.134069
Volume 460
WOSCitedRecordID wos001177544800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001737
  issn: 0167-2789
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVgCxIcKiggSgH5wK1ktYm_sseqKmoRrHoo0t4i27HFVlUo2d1S8esZf8RJabWiBy6RFcWTKM-aTMYz7yH0YULAH-Zu211pllEhuBNyrzNCBZecabdV5sUmxGxWzufT06jfufRyAqJpyuvr6eV_hRrOAdiudfYecCejcALGADocAXY4_hPws0B-IVuXJvClr34TffkdPF9mHV8BxJgrpzoU6Lh_yStflLUP4aNvcsiaZMHJp6xdPm3f_FwPcnsxmj0NII_7suEvi9-ybWXI1p70K--rbF0XQ9jjCNXcw3xDMSxTiSlIcK2uf3boQ2kQBYheMCeun_ZOBx1yBedjl7dxRK0FHfdX36TD_uszlYoHu7q088obqZyRKhh5iLYKwablCG0dnBzNP6dvci4Ce2r37B3_lK_0u_Usd8cog7jj7Bnajj8M-CAA_Rw9MM0OejqgkdxBjwMOyxeoSuDjBD7-YfEN8HEPPvbg40WDb4OPE_g4gf8Sfft0dHZ4nEUJjUwTWq4yyXKjtIIIxBox4bqsqeJEk0JTZnMJvwvKmgk3ijFWlxNdsIIQbY2Z6toqLskrNIL7mtcIq8JIy52AnKCUMqFqCUOlrdKS2zLfRUX30iod-eWdzMlFtQGwXfQxTboM9CqbL-cdGlWMEEPkV8H62jTxzf3us4ee9Ev_LRqt2rV5hx7pq9Vi2b6Pi-sPtbOMBw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+stability+of+shock-fronted+travelling+waves+in+reaction-nonlinear+diffusion+equations&rft.jtitle=Physica.+D&rft.au=Lizarraga%2C+Ian&rft.au=Marangell%2C+Robert&rft.date=2024-04-01&rft.issn=0167-2789&rft.volume=460&rft.spage=134069&rft_id=info:doi/10.1016%2Fj.physd.2024.134069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physd_2024_134069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon