List-k-Coloring H-Free Graphs for All k>4
Given an integer k > 4 and a graph H , we prove that, assuming P ≠ NP, the List- k -Coloring Problem restricted to H -free graphs can be solved in polynomial time if and only if either every component of H is a path on at most three vertices, or removing the isolated vertices of H leaves an induc...
Uloženo v:
| Vydáno v: | Combinatorica (Budapest. 1981) Ročník 44; číslo 5; s. 1063 - 1068 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0209-9683, 1439-6912 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given an integer
k
>
4
and a graph
H
, we prove that, assuming P
≠
NP, the
List-
k
-Coloring Problem
restricted to
H
-free graphs can be solved in polynomial time if and only if either every component of
H
is a path on at most three vertices, or removing the isolated vertices of
H
leaves an induced subgraph of the five-vertex path. In fact, the “if” implication holds for all
k
≥
1
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0209-9683 1439-6912 |
| DOI: | 10.1007/s00493-024-00106-2 |