On solving a multiobjective fixed charge problem with imprecise fractional objectives

•Multiobjective Fixed Charge Problem with fractional objective functions.•Imprecise nature of objectives – fuzzy coefficients and fuzzy fixed charges.•Systematically enumerating the extreme points of the feasible region.•Ranking function is employed to deal with fuzziness, and a set of efficient sol...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 40; s. 64 - 69
Hlavní autoři: Upmanyu, M., Saxena, R.R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2016
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Multiobjective Fixed Charge Problem with fractional objective functions.•Imprecise nature of objectives – fuzzy coefficients and fuzzy fixed charges.•Systematically enumerating the extreme points of the feasible region.•Ranking function is employed to deal with fuzziness, and a set of efficient solutions is obtained.•Numerical example provided to illustrate the algorithm. The fixed charge problem is a special type of nonlinear programming problem which forms the basis of many industry problems wherein a charge is associated with performing an activity. In real world situations, the information provided by the decision maker regarding the coefficients of the objective functions may not be of a precise nature. This paper aims to describe a solution algorithm for solving such a fixed charge problem having multiple fractional objective functions which are all of a fuzzy nature. The enumerative technique developed not only finds the set of efficient solutions but also a corresponding fuzzy solution, enabling the decision maker to operate in the range obtained. A real life numerical example in the context of the ship routing problem is presented to illustrate the proposed method.
ISSN:1568-4946
1872-9681
DOI:10.1016/j.asoc.2015.10.008