Determination of the number of an eigenvalue of a singular nonlinear self-adjoint spectral problem for a linear Hamiltonian system of differential equations

We suggest a method for determining the number of an eigenvalue of a self-adjoint spectral problem nonlinear with respect to the spectral parameter, for some class of Hamiltonian systems of ordinary differential equations on the half-line. The standard boundary conditions are posed at zero, and the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Differential equations Ročník 47; číslo 8; s. 1110 - 1115
Hlavní autoři: Abramov, A. A., Ul’yanova, V. I., Yukhno, L. F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht SP MAIK Nauka/Interperiodica 01.08.2011
Springer Nature B.V
Témata:
ISSN:0012-2661, 1608-3083
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We suggest a method for determining the number of an eigenvalue of a self-adjoint spectral problem nonlinear with respect to the spectral parameter, for some class of Hamiltonian systems of ordinary differential equations on the half-line. The standard boundary conditions are posed at zero, and the solution boundedness condition is posed at infinity. We assume that the matrix of the system is monotone with respect to the spectral parameter. The number of an eigenvalue is determined by the properties of the corresponding nontrivially solvable homogeneous boundary value problem. For the considered class of systems, it becomes possible to compute the numbers of eigenvalues lying in a given range of the spectral parameter without finding the eigenvalues themselves.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266111080052