Determination of the number of an eigenvalue of a singular nonlinear self-adjoint spectral problem for a linear Hamiltonian system of differential equations
We suggest a method for determining the number of an eigenvalue of a self-adjoint spectral problem nonlinear with respect to the spectral parameter, for some class of Hamiltonian systems of ordinary differential equations on the half-line. The standard boundary conditions are posed at zero, and the...
Gespeichert in:
| Veröffentlicht in: | Differential equations Jg. 47; H. 8; S. 1110 - 1115 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
SP MAIK Nauka/Interperiodica
01.08.2011
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0012-2661, 1608-3083 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We suggest a method for determining the number of an eigenvalue of a self-adjoint spectral problem nonlinear with respect to the spectral parameter, for some class of Hamiltonian systems of ordinary differential equations on the half-line. The standard boundary conditions are posed at zero, and the solution boundedness condition is posed at infinity. We assume that the matrix of the system is monotone with respect to the spectral parameter. The number of an eigenvalue is determined by the properties of the corresponding nontrivially solvable homogeneous boundary value problem. For the considered class of systems, it becomes possible to compute the numbers of eigenvalues lying in a given range of the spectral parameter without finding the eigenvalues themselves. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0012-2661 1608-3083 |
| DOI: | 10.1134/S0012266111080052 |