Implementing the Nelder-Mead simplex algorithm with adaptive parameters
In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimen...
Gespeichert in:
| Veröffentlicht in: | Computational optimization and applications Jg. 51; H. 1; S. 259 - 277 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.01.2012
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0926-6003, 1573-2894 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimensions. We then propose an implementation of the Nelder-Mead method in which the expansion, contraction, and shrink parameters depend on the dimension of the optimization problem. Our numerical experiments show that the new implementation outperforms the standard Nelder-Mead method for high dimensional problems. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1007/s10589-010-9329-3 |