Implementing the Nelder-Mead simplex algorithm with adaptive parameters
In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimen...
Uložené v:
| Vydané v: | Computational optimization and applications Ročník 51; číslo 1; s. 259 - 277 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.01.2012
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimensions. We then propose an implementation of the Nelder-Mead method in which the expansion, contraction, and shrink parameters depend on the dimension of the optimization problem. Our numerical experiments show that the new implementation outperforms the standard Nelder-Mead method for high dimensional problems. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1007/s10589-010-9329-3 |