Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey

Multi-Objective Evolutionary Algorithms (MOEAs) are powerful search techniques that have been extensively used to solve difficult problems in a wide variety of disciplines. However, they can be very demanding in terms of computational resources. Parallel implementations of MOEAs (pMOEAs) provide con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Swarm and evolutionary computation Ročník 67; s. 100960
Hlavní autoři: Falcón-Cardona, Jesús Guillermo, Hernández Gómez, Raquel, Coello Coello, Carlos A., Castillo Tapia, Ma. Guadalupe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2021
Témata:
ISSN:2210-6502
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Multi-Objective Evolutionary Algorithms (MOEAs) are powerful search techniques that have been extensively used to solve difficult problems in a wide variety of disciplines. However, they can be very demanding in terms of computational resources. Parallel implementations of MOEAs (pMOEAs) provide considerable gains regarding performance and scalability and, therefore, their relevance in tackling computationally expensive applications. This paper presents a survey of pMOEAs, describing a refined taxonomy, an up-to-date review of methods and the key contributions to the field. Furthermore, some of the open questions that require further research are also briefly discussed.
ISSN:2210-6502
DOI:10.1016/j.swevo.2021.100960