Fully connected autoencoder and convolutional neural network with attention-based method for inferring disease-related lncRNAs
Abstract Since abnormal expression of long noncoding RNAs (lncRNAs) is often closely related to various human diseases, identification of disease-associated lncRNAs is helpful for exploring the complex pathogenesis. Most of recent methods concentrate on exploiting multiple kinds of data related to l...
Uloženo v:
| Vydáno v: | Briefings in bioinformatics Ročník 23; číslo 3 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Oxford University Press
13.05.2022
Oxford Publishing Limited (England) |
| Témata: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Abstract
Since abnormal expression of long noncoding RNAs (lncRNAs) is often closely related to various human diseases, identification of disease-associated lncRNAs is helpful for exploring the complex pathogenesis. Most of recent methods concentrate on exploiting multiple kinds of data related to lncRNAs and diseases for predicting candidate disease-related lncRNAs. These methods, however, failed to deeply integrate the topology information from the meta-paths that are composed of lncRNA, disease and microRNA (miRNA) nodes. We proposed a new method based on fully connected autoencoders and convolutional neural networks, called ACLDA, for inferring potential disease-related lncRNA candidates. A heterogeneous graph that consists of lncRNA, disease and miRNA nodes were firstly constructed to integrate similarities, associations and interactions among them. Fully connected autoencoder-based module was established to extract the low-dimensional features of lncRNA, disease and miRNA nodes in the heterogeneous graph. We designed the attention mechanisms at the node feature level and at the meta-path level to learn more informative features and meta-paths. A module based on convolutional neural networks was constructed to encode the local topologies of lncRNA and disease nodes from multiple meta-path perspectives. The comprehensive experimental results demonstrated ACLDA achieves superior performance than several state-of-the-art prediction methods. Case studies on breast, lung and colon cancers demonstrated that ACLDA is able to discover the potential disease-related lncRNAs. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1467-5463 1477-4054 1477-4054 |
| DOI: | 10.1093/bib/bbac089 |