On Second-Order Variational Analysis of Variational Convexity of Prox-Regular Functions
Variational convexity, together with ist strong counterpart, of extended-real-valued functions has been recently introduced by Rockafellar. In this paper we present second-order characterizations of these properties, i.e., conditions using first-order generalized derivatives of the subgradient mappi...
Uloženo v:
| Vydáno v: | Set-valued and variational analysis Ročník 33; číslo 1; s. 8 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.03.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1877-0533, 1877-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Variational convexity, together with ist strong counterpart, of extended-real-valued functions has been recently introduced by Rockafellar. In this paper we present second-order characterizations of these properties, i.e., conditions using first-order generalized derivatives of the subgradient mapping. Up to now, such characterizations are only known under the assumptions of prox-regularity and subdifferential continuity and in this paper we discard the latter. To this aim we slightly modify the definitions of the generalized derivatives to be compatible with the
f
-attentive convergence appearing in the definition of subgradients. We formulate our results in terms of both coderivatives and subspace containing derivatives. We also give formulas for the exact bound of variational convexity and study relations between variational strong convexity, tilt-stable local minimizers and strong metric regularity of some truncation of the subgradient mapping. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1877-0533 1877-0541 |
| DOI: | 10.1007/s11228-025-00744-8 |