On Second-Order Variational Analysis of Variational Convexity of Prox-Regular Functions
Variational convexity, together with ist strong counterpart, of extended-real-valued functions has been recently introduced by Rockafellar. In this paper we present second-order characterizations of these properties, i.e., conditions using first-order generalized derivatives of the subgradient mappi...
Gespeichert in:
| Veröffentlicht in: | Set-valued and variational analysis Jg. 33; H. 1; S. 8 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.03.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1877-0533, 1877-0541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Variational convexity, together with ist strong counterpart, of extended-real-valued functions has been recently introduced by Rockafellar. In this paper we present second-order characterizations of these properties, i.e., conditions using first-order generalized derivatives of the subgradient mapping. Up to now, such characterizations are only known under the assumptions of prox-regularity and subdifferential continuity and in this paper we discard the latter. To this aim we slightly modify the definitions of the generalized derivatives to be compatible with the
f
-attentive convergence appearing in the definition of subgradients. We formulate our results in terms of both coderivatives and subspace containing derivatives. We also give formulas for the exact bound of variational convexity and study relations between variational strong convexity, tilt-stable local minimizers and strong metric regularity of some truncation of the subgradient mapping. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1877-0533 1877-0541 |
| DOI: | 10.1007/s11228-025-00744-8 |