Adaptive Latent Graph Representation Learning for Image-Text Matching
Image-text matching is a challenging task due to the modality gap. Many recent methods focus on modeling entity relationships to learn a common embedding space of image and text. However, these methods suffer from distractions of entity relationships such as irrelevant visual regions in an image and...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 32; s. 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Image-text matching is a challenging task due to the modality gap. Many recent methods focus on modeling entity relationships to learn a common embedding space of image and text. However, these methods suffer from distractions of entity relationships such as irrelevant visual regions in an image and noisy textual words in a text. In this paper, we propose an adaptive latent graph representation learning method to reduce the distractions of entity relationships for image-text matching. Specifically, we use an improved graph variational autoencoder to separate the distracting factors and latent factor of relationships and jointly learn latent textual graph representations, latent visual graph representations, and a visual-textual graph embedding space. We also introduce an adaptive cross-attention mechanism to perform feature attending on the latent graph representations across images and texts, thus further narrowing the modality gap to boost the matching performance. Extensive experiments on two public datasets, Flickr30K and COCO, show the effectiveness of our method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2022.3229631 |