Karush–Kuhn–Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions
This paper deals with convex semi-infinite programming with multiple interval-valued objective functions. We first investigate necessary and sufficient Karush–Kuhn–Tucker optimality conditions for some types of optimal solutions. Then, we formulate types of Mond–Weir and Wolfe dual problems and expl...
Uložené v:
| Vydané v: | Journal of applied mathematics & computing Ročník 62; číslo 1-2; s. 67 - 91 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1598-5865, 1865-2085 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper deals with convex semi-infinite programming with multiple interval-valued objective functions. We first investigate necessary and sufficient Karush–Kuhn–Tucker optimality conditions for some types of optimal solutions. Then, we formulate types of Mond–Weir and Wolfe dual problems and explore duality relations under convexity assumptions. Some examples are provided to illustrate the advantages of our results in some cases. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1598-5865 1865-2085 |
| DOI: | 10.1007/s12190-019-01274-x |