Karush–Kuhn–Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions

This paper deals with convex semi-infinite programming with multiple interval-valued objective functions. We first investigate necessary and sufficient Karush–Kuhn–Tucker optimality conditions for some types of optimal solutions. Then, we formulate types of Mond–Weir and Wolfe dual problems and expl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of applied mathematics & computing Ročník 62; číslo 1-2; s. 67 - 91
Hlavný autor: Tung, Le Thanh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
Predmet:
ISSN:1598-5865, 1865-2085
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper deals with convex semi-infinite programming with multiple interval-valued objective functions. We first investigate necessary and sufficient Karush–Kuhn–Tucker optimality conditions for some types of optimal solutions. Then, we formulate types of Mond–Weir and Wolfe dual problems and explore duality relations under convexity assumptions. Some examples are provided to illustrate the advantages of our results in some cases.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-019-01274-x