Karush–Kuhn–Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions
This paper deals with convex semi-infinite programming with multiple interval-valued objective functions. We first investigate necessary and sufficient Karush–Kuhn–Tucker optimality conditions for some types of optimal solutions. Then, we formulate types of Mond–Weir and Wolfe dual problems and expl...
Gespeichert in:
| Veröffentlicht in: | Journal of applied mathematics & computing Jg. 62; H. 1-2; S. 67 - 91 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1598-5865, 1865-2085 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper deals with convex semi-infinite programming with multiple interval-valued objective functions. We first investigate necessary and sufficient Karush–Kuhn–Tucker optimality conditions for some types of optimal solutions. Then, we formulate types of Mond–Weir and Wolfe dual problems and explore duality relations under convexity assumptions. Some examples are provided to illustrate the advantages of our results in some cases. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1598-5865 1865-2085 |
| DOI: | 10.1007/s12190-019-01274-x |