Karush–Kuhn–Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions

This paper deals with convex semi-infinite programming with multiple interval-valued objective functions. We first investigate necessary and sufficient Karush–Kuhn–Tucker optimality conditions for some types of optimal solutions. Then, we formulate types of Mond–Weir and Wolfe dual problems and expl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing Jg. 62; H. 1-2; S. 67 - 91
1. Verfasser: Tung, Le Thanh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
Schlagworte:
ISSN:1598-5865, 1865-2085
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with convex semi-infinite programming with multiple interval-valued objective functions. We first investigate necessary and sufficient Karush–Kuhn–Tucker optimality conditions for some types of optimal solutions. Then, we formulate types of Mond–Weir and Wolfe dual problems and explore duality relations under convexity assumptions. Some examples are provided to illustrate the advantages of our results in some cases.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-019-01274-x