High-dimensional scalar function visualization using principal parameterizations

Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Visual computer Ročník 40; číslo 4; s. 2571 - 2588
Hlavní autori: Ballester-Ripoll, Rafael, Halter, Gaudenz, Pajarola, Renato
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Predmet:
ISSN:0178-2789, 1432-2315
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters. The method performs dimensionality reduction on the space formed by all possible partial functions (i.e., those defined by fixing one or more input parameters to specific values), which are projected to low-dimensional parameterized manifolds such as 3D curves, surfaces, and ensembles thereof. Our mapping provides a direct geometrical and visual interpretation in terms of Sobol’s celebrated method for variance-based sensitivity analysis. We furthermore contribute a practical realization of the proposed method by means of tensor decomposition, which enables accurate yet interactive integration and multilinear principal component analysis of high-dimensional models.
AbstractList Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters. The method performs dimensionality reduction on the space formed by all possible partial functions (i.e., those defined by fixing one or more input parameters to specific values), which are projected to low-dimensional parameterized manifolds such as 3D curves, surfaces, and ensembles thereof. Our mapping provides a direct geometrical and visual interpretation in terms of Sobol’s celebrated method for variance-based sensitivity analysis. We furthermore contribute a practical realization of the proposed method by means of tensor decomposition, which enables accurate yet interactive integration and multilinear principal component analysis of high-dimensional models.
Author Ballester-Ripoll, Rafael
Pajarola, Renato
Halter, Gaudenz
Author_xml – sequence: 1
  givenname: Rafael
  orcidid: 0000-0001-5831-2056
  surname: Ballester-Ripoll
  fullname: Ballester-Ripoll, Rafael
  email: rafael.ballester@ie.edu
  organization: IE University
– sequence: 2
  givenname: Gaudenz
  surname: Halter
  fullname: Halter, Gaudenz
  organization: University of Zurich
– sequence: 3
  givenname: Renato
  surname: Pajarola
  fullname: Pajarola, Renato
  organization: University of Zurich
BookMark eNqFkE1LAzEQhoNUsK3-AU8LnqNJJtskRylqhYIe9BxiNqkp29012RX015t-gOChHkKY4X2GmWeCRk3bOIQuKbmmhIibRAgIigmD_BQIzE_QmHJgmAEtR2hMqJCYCanO0CSlNcm14GqMnhdh9Y6rsHFNCm1j6iJZU5tY-KGxfe4UnyENpg7fZlcNKTSroouhsaHL6c5Es3G9i4dAOken3tTJXRz-KXq9v3uZL_Dy6eFxfrvEFrjosXJKWagsJwCMG-HkG8w8eOZkxUubt6WqNFBWILmUSjhXihkrmeeV8ar0MEVX-7ldbD8Gl3q9boeYD0ga8kwpiaLqv5RgjFGSU3KfsrFNKTqvbeh35_TRhFpToreW9d6yzpb1zrLmGWV_0OxmY-LXcQj2UNqKXLn4u9UR6gdgg5Fb
CitedBy_id crossref_primary_10_1007_s00371_023_03235_9
Cites_doi 10.1006/jcom.2001.0588
10.1137/17M1160252
10.1016/j.probengmech.2013.02.002
10.1073/pnas.88.20.9107
10.1109/TVCG.2011.244
10.1111/cgf.13177
10.1109/TVCG.2010.190
10.1109/TVCG.2010.213
10.1016/j.laa.2009.07.024
10.1109/MSP.2014.2329429
10.1007/3-540-47969-4_30
10.1109/TVCG.2016.2640960
10.1109/TVCG.2014.2346321
10.1007/s10596-017-9641-4
10.1007/978-1-4899-7547-8_5
10.1111/cgf.13176
10.1109/TVCG.2011.248
10.1137/1.9781611973860
10.1002/gamm.201310004
10.1137/090752286
10.1109/TSMCB.2003.808183
10.1016/j.foodqual.2016.06.011
10.1002/9780470725184
10.1073/pnas.95.24.14190
10.1137/15M1036919
10.1109/VAST.2010.5652460
10.1109/TVCG.2007.70406
10.1137/07070111X
10.1109/VISUAL.1993.398859
10.2172/1733296
10.1016/j.ress.2008.11.012
10.1162/jocn.1991.3.1.71
10.1145/3002151.3002167
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-023-02937-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 2588
ExternalDocumentID 10_1007_s00371_023_02937_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c347t-9e99c3dc403324a7e8b36f3f2e8d45c178195a35d3848897ee576252f4daf95f3
IEDL.DBID P5Z
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001019486000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-2789
IngestDate Wed Nov 05 04:13:16 EST 2025
Wed Nov 05 09:17:38 EST 2025
Sat Nov 29 02:23:31 EST 2025
Tue Nov 18 22:27:44 EST 2025
Fri Feb 21 02:41:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Dimensionality reduction
Tensor decompositions
Sensitivity analysis
Scientific visualization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-9e99c3dc403324a7e8b36f3f2e8d45c178195a35d3848897ee576252f4daf95f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5831-2056
PQID 3033722210
PQPubID 2043737
PageCount 18
ParticipantIDs proquest_journals_3033880919
proquest_journals_3033722210
crossref_citationtrail_10_1007_s00371_023_02937_4
crossref_primary_10_1007_s00371_023_02937_4
springer_journals_10_1007_s00371_023_02937_4
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AnJOwenABQuasi-regressionJ. Complex.2001174588607188166010.1006/jcom.2001.0588
ttrecipes: a high-level Python library of tensor train numerical utilities. https://github.com/rballester/ttrecipes
GallagherMDownsTVisualization of learning in multilayer perceptron networks using principal component analysisIEEE Trans. Syst., Man, Cybern., Part B2003331283410.1109/TSMCB.2003.808183
Chan, Y.H., Correa, C.D., Ma, K.L.: Flow-based scatterplots for sensitivity analysis. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 43 – 50 (2010)
OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286
Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and CDC2 kinase. In: National Academy of Sciences of the United States of America, vol. 88, no. 20, pp. 9107–9111 (1991)
Torsney-WeirTSaadAMöllerTHegeHCWeberBVerbavatzJMTuner: principled parameter finding for image segmentation algorithms using visual response surface explorationIEEE Trans. Vis. Comput. Graph.201117121892190110.1109/TVCG.2011.248
Bolado-Lavin, R., Castaings, W., Tarantola, S.: Contribution to the sample mean plot for graphical and numerical sensitivity analysis. Reliab. Eng. Syst. Saf. 94(6), 1041–1049 (2009). https://doi.org/10.1016/j.ress.2008.11.012. www.sciencedirect.com/science/article/pii/S0951832008002743
ConstantinePGActive Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies2015PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611973860
DiazPConstantinePGKalmbachKJonesEPankavichSA modified SEIR model for the spread of Ebola in western Africa and metrics for resource allocationAppl. Math. Comput.20183241411553743663
TurkMPentlandAEigenfaces for recognitionJ. Cogn. Neurosci.199131718610.1162/jocn.1991.3.1.71
KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X
Ballester-RipollRParedesEGPajarolaRTensor algorithms for advanced sensitivity metricsSIAM/ASA J. Uncertain. Quant.20186311721197384629610.1137/17M1160252
Gardner, T.S., Dolnik, M., Collins, J.J.: A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. In: National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14,190–14,195 (1998)
BigoniDEngsig-KarupAMarzoukYSpectral tensor-train decompositionSIAM J. Sci. Comput.2016384A2405A2439353447310.1137/15M1036919
Iooss, B., Lemaître, P.: A Review on Global Sensitivity Analysis Methods, pp. 101–122. Springer, Boston (2015)
LiuSMaljovecDWangBBremerPTPascucciVVisualizing high-dimensional data: advances in the past decadeIEEE Trans. Vis. Comput. Graph.20172331249126810.1109/TVCG.2016.2640960
van Wijk, J.J., van Liere, R.: HyperSlice: visualization of scalar functions of many variables. In: Proceedings IEEE VIS, pp. 119–125 (1993)
BanzhafJFWeighted voting doesn’t work: a mathematical analysisRutgers Law Rev.196519317343
OseledetsIVTyrtyshnikovETT-cross approximation for multidimensional arraysLinear Algebra Appl.201043217088256645910.1016/j.laa.2009.07.024
SedlmairMHeinzlCBrucknerSPiringerHMöllerTVisual parameter space analysis: a conceptual frameworkIEEE Trans. Vis. Comput. Graph.201420122161217010.1109/TVCG.2014.2346321
ttpy: a tensor train toolbox implemented in Python. http://github.com/oseledets/ttpy
Sobol’IMSensitivity estimates for nonlinear mathematical models (in Russian)Math. Models19902112118
Fruth, J., Roustant, O., Muehlenstaedt, T.: The fanovaGraph package: visualization of interaction structures and construction of block-additive kriging models. HAL preprint 00795229 (2013). https://hal.archives-ouvertes.fr/hal-00795229
VervlietNDebalsOSorberLLathauwerLDBreaking the curse of dimensionality using decompositions of incomplete tensors: tensor-based scientific computing in big data analysisIEEE Signal Process. Mag.2014315717910.1109/MSP.2014.2329429
GrasedyckLKressnerDToblerCA literature survey of low-rank tensor approximation techniquesGAMM-Mitteilungen20133615378309591410.1002/gamm.201310004
Torsney-WeirTSedlmairMMöllerTSliceplorer: 1D slices for multi-dimensional continuous functionsComput. Graph. Forum201736316717710.1111/cgf.13177
Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: Tensorfaces. In: European Conference on Computer Vision, pp. 447–460 (2002)
Sedlmair, M., Brehmer, M., Ingram, S., Munzner, T.: Dimensionality reduction in the wild: gaps and guidance. Tech. Rep. TR-2012-03, University of British Columbia, Department of Computer Science (2012)
ShaoLMahajanASchreckTLehmannDJInteractive regression lens for exploring scatter plotsComput. Graph. Forum201736315716610.1111/cgf.13176
WuQXiaTChenCLinHYSWangHYuYHierarchical tensor approximation of multidimensional visual dataIEEE Trans. Vis. Comput. Graph.200814118619910.1109/TVCG.2007.70406
GerberSBremerPTPascucciVWhitakerRVisual exploration of high dimensional scalar functionsIEEE Trans. Vis. Comput. Graph.20101661271128010.1109/TVCG.2010.213
Ward, M.O., LeBlanc, J.T., Tipnis, R.: N-land: a graphical tool for exploring N-dimensional data. In: Proceedings Computer Graphics International, pp. 95–116 (1994)
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley (2008)
InsuastyEVan den HofPMJWeilandSJansenJDFlow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approachComput. Geosci.2017214645663367164810.1007/s10596-017-9641-4
CasturaJCBakerAKRossCFUsing contrails and animated sequences to visualize uncertainty in dynamic sensory profiles obtained from temporal check-all-that-apply (TCATA) dataFood Qual. Prefer.2016549010010.1016/j.foodqual.2016.06.011
DubourgVSudretBDeheegerFMetamodel-based importance sampling for structural reliability analysisProbab. Eng. Mech.201333475710.1016/j.probengmech.2013.02.002
Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: Sobol tensor trains for global sensitivity analysis. ArXiv e-print arXiv:1712.00233 (2017)
Gorodetsky, A.A., Jakeman, J.D.: Gradient-based optimization for regression in the functional tensor-train format. ArXiv e-print (2018). arxiv:1801.00885
Knutsson, H.: Representing local structure using tensors. Tech. Rep. LiTH-ISY-I, 8765-4321, Computer Vision Laboratory, Linköping University (1989)
BrucknerSMoellerTResult-driven exploration of simulation parameter spaces for visual effects designIEEE Trans. Vis. Comput. Graph.20101661467147510.1109/TVCG.2010.190
CorreaCLindstromPBremerPTTopological spines: a structure-preserving visual representation of scalar fieldsIEEE Trans. Vis. Comput. Graph.201117121842185110.1109/TVCG.2011.244
Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: A surrogate visualization model using the tensor train format. In: SIGGRAPH ASIA 2016 Symposium on Visualization, pp. 13:1–13:8 (2016)
Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. In: Proceedings Eurographics (State of the Art Reports), pp. 95–116 (2013)
T Torsney-Weir (2937_CR37) 2011; 17
D Bigoni (2937_CR8) 2016; 38
IV Oseledets (2937_CR31) 2010; 432
PG Constantine (2937_CR13) 2015
TG Kolda (2937_CR28) 2009; 51
IV Oseledets (2937_CR30) 2011; 33
V Dubourg (2937_CR16) 2013; 33
S Bruckner (2937_CR10) 2010; 16
2937_CR22
2937_CR21
2937_CR43
J An (2937_CR3) 2001; 17
2937_CR42
2937_CR26
N Vervliet (2937_CR41) 2014; 31
2937_CR24
T Torsney-Weir (2937_CR38) 2017; 36
JF Banzhaf (2937_CR7) 1965; 19
2937_CR27
E Insuasty (2937_CR25) 2017; 21
L Shao (2937_CR35) 2017; 36
M Turk (2937_CR39) 1991; 3
M Sedlmair (2937_CR34) 2014; 20
S Gerber (2937_CR20) 2010; 16
Q Wu (2937_CR44) 2008; 14
2937_CR4
2937_CR5
JC Castura (2937_CR11) 2016; 54
2937_CR40
2937_CR9
2937_CR33
R Ballester-Ripoll (2937_CR6) 2018; 6
S Liu (2937_CR29) 2017; 23
2937_CR32
IM Sobol (2937_CR36) 1990; 2
C Correa (2937_CR14) 2011; 17
M Gallagher (2937_CR18) 2003; 33
2937_CR1
2937_CR2
2937_CR12
2937_CR19
2937_CR17
P Diaz (2937_CR15) 2018; 324
L Grasedyck (2937_CR23) 2013; 36
References_xml – reference: DubourgVSudretBDeheegerFMetamodel-based importance sampling for structural reliability analysisProbab. Eng. Mech.201333475710.1016/j.probengmech.2013.02.002
– reference: BrucknerSMoellerTResult-driven exploration of simulation parameter spaces for visual effects designIEEE Trans. Vis. Comput. Graph.20101661467147510.1109/TVCG.2010.190
– reference: OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286
– reference: VervlietNDebalsOSorberLLathauwerLDBreaking the curse of dimensionality using decompositions of incomplete tensors: tensor-based scientific computing in big data analysisIEEE Signal Process. Mag.2014315717910.1109/MSP.2014.2329429
– reference: OseledetsIVTyrtyshnikovETT-cross approximation for multidimensional arraysLinear Algebra Appl.201043217088256645910.1016/j.laa.2009.07.024
– reference: Ward, M.O., LeBlanc, J.T., Tipnis, R.: N-land: a graphical tool for exploring N-dimensional data. In: Proceedings Computer Graphics International, pp. 95–116 (1994)
– reference: Fruth, J., Roustant, O., Muehlenstaedt, T.: The fanovaGraph package: visualization of interaction structures and construction of block-additive kriging models. HAL preprint 00795229 (2013). https://hal.archives-ouvertes.fr/hal-00795229
– reference: Bolado-Lavin, R., Castaings, W., Tarantola, S.: Contribution to the sample mean plot for graphical and numerical sensitivity analysis. Reliab. Eng. Syst. Saf. 94(6), 1041–1049 (2009). https://doi.org/10.1016/j.ress.2008.11.012. www.sciencedirect.com/science/article/pii/S0951832008002743’
– reference: Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: Sobol tensor trains for global sensitivity analysis. ArXiv e-print arXiv:1712.00233 (2017)
– reference: van Wijk, J.J., van Liere, R.: HyperSlice: visualization of scalar functions of many variables. In: Proceedings IEEE VIS, pp. 119–125 (1993)
– reference: Sedlmair, M., Brehmer, M., Ingram, S., Munzner, T.: Dimensionality reduction in the wild: gaps and guidance. Tech. Rep. TR-2012-03, University of British Columbia, Department of Computer Science (2012)
– reference: CorreaCLindstromPBremerPTTopological spines: a structure-preserving visual representation of scalar fieldsIEEE Trans. Vis. Comput. Graph.201117121842185110.1109/TVCG.2011.244
– reference: CasturaJCBakerAKRossCFUsing contrails and animated sequences to visualize uncertainty in dynamic sensory profiles obtained from temporal check-all-that-apply (TCATA) dataFood Qual. Prefer.2016549010010.1016/j.foodqual.2016.06.011
– reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X
– reference: Knutsson, H.: Representing local structure using tensors. Tech. Rep. LiTH-ISY-I, 8765-4321, Computer Vision Laboratory, Linköping University (1989)
– reference: Chan, Y.H., Correa, C.D., Ma, K.L.: Flow-based scatterplots for sensitivity analysis. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 43 – 50 (2010)
– reference: ConstantinePGActive Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies2015PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611973860
– reference: Gorodetsky, A.A., Jakeman, J.D.: Gradient-based optimization for regression in the functional tensor-train format. ArXiv e-print (2018). arxiv:1801.00885
– reference: Sobol’IMSensitivity estimates for nonlinear mathematical models (in Russian)Math. Models19902112118
– reference: GallagherMDownsTVisualization of learning in multilayer perceptron networks using principal component analysisIEEE Trans. Syst., Man, Cybern., Part B2003331283410.1109/TSMCB.2003.808183
– reference: BanzhafJFWeighted voting doesn’t work: a mathematical analysisRutgers Law Rev.196519317343
– reference: LiuSMaljovecDWangBBremerPTPascucciVVisualizing high-dimensional data: advances in the past decadeIEEE Trans. Vis. Comput. Graph.20172331249126810.1109/TVCG.2016.2640960
– reference: Torsney-WeirTSedlmairMMöllerTSliceplorer: 1D slices for multi-dimensional continuous functionsComput. Graph. Forum201736316717710.1111/cgf.13177
– reference: GrasedyckLKressnerDToblerCA literature survey of low-rank tensor approximation techniquesGAMM-Mitteilungen20133615378309591410.1002/gamm.201310004
– reference: Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. In: Proceedings Eurographics (State of the Art Reports), pp. 95–116 (2013)
– reference: Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and CDC2 kinase. In: National Academy of Sciences of the United States of America, vol. 88, no. 20, pp. 9107–9111 (1991)
– reference: BigoniDEngsig-KarupAMarzoukYSpectral tensor-train decompositionSIAM J. Sci. Comput.2016384A2405A2439353447310.1137/15M1036919
– reference: Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley (2008)
– reference: ShaoLMahajanASchreckTLehmannDJInteractive regression lens for exploring scatter plotsComput. Graph. Forum201736315716610.1111/cgf.13176
– reference: SedlmairMHeinzlCBrucknerSPiringerHMöllerTVisual parameter space analysis: a conceptual frameworkIEEE Trans. Vis. Comput. Graph.201420122161217010.1109/TVCG.2014.2346321
– reference: Gardner, T.S., Dolnik, M., Collins, J.J.: A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. In: National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14,190–14,195 (1998)
– reference: Torsney-WeirTSaadAMöllerTHegeHCWeberBVerbavatzJMTuner: principled parameter finding for image segmentation algorithms using visual response surface explorationIEEE Trans. Vis. Comput. Graph.201117121892190110.1109/TVCG.2011.248
– reference: AnJOwenABQuasi-regressionJ. Complex.2001174588607188166010.1006/jcom.2001.0588
– reference: Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: A surrogate visualization model using the tensor train format. In: SIGGRAPH ASIA 2016 Symposium on Visualization, pp. 13:1–13:8 (2016)
– reference: ttrecipes: a high-level Python library of tensor train numerical utilities. https://github.com/rballester/ttrecipes
– reference: DiazPConstantinePGKalmbachKJonesEPankavichSA modified SEIR model for the spread of Ebola in western Africa and metrics for resource allocationAppl. Math. Comput.20183241411553743663
– reference: GerberSBremerPTPascucciVWhitakerRVisual exploration of high dimensional scalar functionsIEEE Trans. Vis. Comput. Graph.20101661271128010.1109/TVCG.2010.213
– reference: Iooss, B., Lemaître, P.: A Review on Global Sensitivity Analysis Methods, pp. 101–122. Springer, Boston (2015)
– reference: Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: Tensorfaces. In: European Conference on Computer Vision, pp. 447–460 (2002)
– reference: ttpy: a tensor train toolbox implemented in Python. http://github.com/oseledets/ttpy
– reference: Ballester-RipollRParedesEGPajarolaRTensor algorithms for advanced sensitivity metricsSIAM/ASA J. Uncertain. Quant.20186311721197384629610.1137/17M1160252
– reference: TurkMPentlandAEigenfaces for recognitionJ. Cogn. Neurosci.199131718610.1162/jocn.1991.3.1.71
– reference: InsuastyEVan den HofPMJWeilandSJansenJDFlow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approachComput. Geosci.2017214645663367164810.1007/s10596-017-9641-4
– reference: WuQXiaTChenCLinHYSWangHYuYHierarchical tensor approximation of multidimensional visual dataIEEE Trans. Vis. Comput. Graph.200814118619910.1109/TVCG.2007.70406
– volume: 17
  start-page: 588
  issue: 4
  year: 2001
  ident: 2937_CR3
  publication-title: J. Complex.
  doi: 10.1006/jcom.2001.0588
– volume: 6
  start-page: 1172
  issue: 3
  year: 2018
  ident: 2937_CR6
  publication-title: SIAM/ASA J. Uncertain. Quant.
  doi: 10.1137/17M1160252
– volume: 33
  start-page: 47
  year: 2013
  ident: 2937_CR16
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2013.02.002
– ident: 2937_CR21
  doi: 10.1073/pnas.88.20.9107
– volume: 17
  start-page: 1842
  issue: 12
  year: 2011
  ident: 2937_CR14
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2011.244
– volume: 36
  start-page: 167
  issue: 3
  year: 2017
  ident: 2937_CR38
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.13177
– ident: 2937_CR2
– volume: 324
  start-page: 141
  year: 2018
  ident: 2937_CR15
  publication-title: Appl. Math. Comput.
– volume: 19
  start-page: 317
  year: 1965
  ident: 2937_CR7
  publication-title: Rutgers Law Rev.
– volume: 16
  start-page: 1467
  issue: 6
  year: 2010
  ident: 2937_CR10
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2010.190
– volume: 16
  start-page: 1271
  issue: 6
  year: 2010
  ident: 2937_CR20
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2010.213
– volume: 432
  start-page: 70
  issue: 1
  year: 2010
  ident: 2937_CR31
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.07.024
– volume: 31
  start-page: 71
  issue: 5
  year: 2014
  ident: 2937_CR41
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2329429
– ident: 2937_CR40
  doi: 10.1007/3-540-47969-4_30
– volume: 23
  start-page: 1249
  issue: 3
  year: 2017
  ident: 2937_CR29
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2016.2640960
– volume: 20
  start-page: 2161
  issue: 12
  year: 2014
  ident: 2937_CR34
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2014.2346321
– volume: 2
  start-page: 112
  year: 1990
  ident: 2937_CR36
  publication-title: Math. Models
– volume: 21
  start-page: 645
  issue: 4
  year: 2017
  ident: 2937_CR25
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-017-9641-4
– ident: 2937_CR26
  doi: 10.1007/978-1-4899-7547-8_5
– ident: 2937_CR24
– volume: 36
  start-page: 157
  issue: 3
  year: 2017
  ident: 2937_CR35
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.13176
– volume: 17
  start-page: 1892
  issue: 12
  year: 2011
  ident: 2937_CR37
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2011.248
– volume-title: Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies
  year: 2015
  ident: 2937_CR13
  doi: 10.1137/1.9781611973860
– volume: 36
  start-page: 53
  issue: 1
  year: 2013
  ident: 2937_CR23
  publication-title: GAMM-Mitteilungen
  doi: 10.1002/gamm.201310004
– volume: 33
  start-page: 2295
  issue: 5
  year: 2011
  ident: 2937_CR30
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090752286
– volume: 33
  start-page: 28
  issue: 1
  year: 2003
  ident: 2937_CR18
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B
  doi: 10.1109/TSMCB.2003.808183
– ident: 2937_CR5
– volume: 54
  start-page: 90
  year: 2016
  ident: 2937_CR11
  publication-title: Food Qual. Prefer.
  doi: 10.1016/j.foodqual.2016.06.011
– ident: 2937_CR32
  doi: 10.1002/9780470725184
– ident: 2937_CR19
  doi: 10.1073/pnas.95.24.14190
– ident: 2937_CR1
– volume: 38
  start-page: A2405
  issue: 4
  year: 2016
  ident: 2937_CR8
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1036919
– ident: 2937_CR12
  doi: 10.1109/VAST.2010.5652460
– volume: 14
  start-page: 186
  issue: 1
  year: 2008
  ident: 2937_CR44
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2007.70406
– ident: 2937_CR17
– ident: 2937_CR33
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 2937_CR28
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– ident: 2937_CR43
  doi: 10.1109/VISUAL.1993.398859
– ident: 2937_CR22
  doi: 10.2172/1733296
– ident: 2937_CR9
  doi: 10.1016/j.ress.2008.11.012
– volume: 3
  start-page: 71
  issue: 1
  year: 1991
  ident: 2937_CR39
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1991.3.1.71
– ident: 2937_CR4
  doi: 10.1145/3002151.3002167
– ident: 2937_CR27
– ident: 2937_CR42
SSID ssj0017749
Score 2.3670933
Snippet Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2571
SubjectTerms Artificial Intelligence
Computer Graphics
Computer Science
Decomposition
Dimensional analysis
Image Processing and Computer Vision
Original Article
Parameter sensitivity
Principal components analysis
Scalars
Sensitivity analysis
Tensors
Variables
Variance analysis
Visualization
SummonAdditionalLinks – databaseName: Springer Journals - Owned
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAO3CBS0yRtc0SIidM08dJuVZumaBKMaR37_TjpY4AYEhx6SvqQncSfa_szwLnmIkoTxmno6YAKHUiaovNDAz-XWmsWmEy4ZhPhYBCNRmpYFYUVdbZ7HZJ0J3VT7ObY5SjaGLzQqFKxDhto7iLbsOHu_qmJHSCgcaCXoX9k6zyrUpmfn_HVHC0x5rewqLM2_fb_vnMXdip0Sa7K5bAHa2bSgXbduYFUG7kD259oCPdhaJM9aGZ5_kuODlKg5pIZsUbPKo4sxoUtvixLNonNlX8m0_I3Pc629OGvNq2mruk8gMf-zcP1La06LVDUVTinyiileaaFxxFgJaGJUh7kPPdNlAmpUZJMyYTLjEe44VVoDLopvvRzkSW5kjk_hNbkbWKOgCiWaC8V6AgJ28mEqUR5RqKTwwLEooZ1gdUCj3VFQ267YbzEDYGyE2CMAoydAGPRhYvmnmlJwvHr7F6tx7jakEWMlpqHiIWYt3IYTzLFVBcua7Uuh1e_7Phv009gy0dUVKb-9KA1n72bU9jUi_m4mJ25dfwBeTHqcQ
  priority: 102
  providerName: Springer Nature
Title High-dimensional scalar function visualization using principal parameterizations
URI https://link.springer.com/article/10.1007/s00371-023-02937-4
https://www.proquest.com/docview/3033722210
https://www.proquest.com/docview/3033880919
Volume 40
WOSCitedRecordID wos001019486000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH8R8KAHv40okh28aSNd2209GTUQExOy4EeIl2V0nSFRQIb8_b52G6gJXjxsl3Vp01_7Ptr3fg_gTDEeDGLKiN9SHuHKE2SAzg_x3FQopainE26LTfjdbtDvy7A4cMuKsMpSJlpBnYyVOSO_RFHLfFRmtHU1-SCmapS5XS1KaFSgZlgSTOmGULwsbhHQtLHmL0VPyWR8FkkzNnXOctUR1Fj4oIom_KdiWlqbvy5Ird7pbP93xDuwVVicznW-RHZhTY_2YPMbD-E-hCbagySG6D8n6XAyhC6eOkbrGeSc-TAz2Zd5zqZjguVfnUl-To-tDX_4u4mrKZM6D-Cp0368vSNFqQWCYPkzIrWUiiWK45hdHvs6GDAvZamrg4QLhRNIpYiZSFiAO176WqOf4go35UmcSpGyQ6iOxiN9BI6ksWoNOHpC3JQyoTKWLS3Qy6EeGqOa1oGW8xypgofclMN4ixYMyhabCLGJLDYRr8P54p9JzsLxZ-tGCUhU7MgsWqKx8jOKMkllHS5KxJefV3d2_HdnJ7DhohmUx_o0oDqbfupTWFfz2TCbNqF20-6GvSZU7n3StIsX372H5y8jtPGU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkoADsLsgCmU3BzixFnXsxPEBIcRDoELFASRu2dRxUCUopSlF_Cl-IzNO0rJIcOPAISc7dhJ_nvkm45kB2DRCRu2EC6YaJmTShAFro_HDQj8LjDE8tKl0xSZUqxVdX-uLCXipYmHoWGUlE52gTu8N_SPfQVErFCoz3tjrPTCqGkXe1aqERgGLpn1-QpMt3z09xPXd8v3jo8uDE1ZWFWD4XGrAtNXaiNRIHNCXibJRW4SZyHwbpTIwXJFnKRFBKiIEt1bWIiX3Az-TaZLpIBM47iRMSxEp2ldNxUZeC6RSjm7jGIwiTMsgHReq53LjMdSQeCElYPJ_RThmt-8csk7PHS9-ty-0BAslo_b2iy3wAyZs9yfMv8mz-Asu6DQLS6mQQZGExMsRmknfI61OyPSGnZyiS4uYVI-CAW68XuGHwN6UH_2Ozg1VQavLcPUlr7QCU937rl0FT_PENNoSLT1JpVq4TnTDBmjF8RDJtuU14NW6xqbMs07lPm7jUYZoh4UYsRA7LMSyBtuje3pFlpFPe9crAMSlxMnj8ep_2IyiWnNdg78VwsbNH0-29vlkf2D25PL8LD47bTXXYc5Hyleca6rD1KD_aDdgxgwHnbz_220VD_59NfJeARLHSUk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVs3Bmy7NZjePPYpaFKUUfNBbSDYbKWgsTezvdzavVrGCeMhpNw9mkp1vsvN9A3AqGffCgDLimtIhXDo2CTH5IY4V21JK6qiI580m3H7fGw7FYI7Fn1e7V1uSBadBqzQlWXccxd2a-JYrzRGMN3hggCV8GVa4LqTX-frDc72PgOAmB8AUcyXN-SxpMz9f42tomuHNb1ukeeTpNf__zFuwWaJO46J4TbZhSSUtaFYdHYzyA2_Bxpw84Q4MdBEIibT-f6HdYaTo0WBi6GCoHWpMR6kmZRZUTkPX0L8Y4-L3Pc7WsuJvutym4nruwlPv-vHyhpQdGAj60M2IUEJIFkluMgRegau8kDkxiy3lRdyWaFUq7IDZEfNwIRCuUpi-WLYV8yiIhR2zPWgk74naB0PQQJohxwSJ6w4nVATCVDYmP9RBjKpoG2hlfF-W8uS6S8arXwsr5wb00YB-bkCft-GsPmdciHP8OrtT-dQvP9TUxwjOXMRI1Fw4jCucoKIN55WLZ8OLb3bwt-knsDa46vn3t_27Q1i3EDgV1UEdaGSTD3UEq3KajdLJcf56fwJ7dPY5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-dimensional+scalar+function+visualization+using+principal+parameterizations&rft.jtitle=The+Visual+computer&rft.au=Ballester-Ripoll%2C+Rafael&rft.au=Halter%2C+Gaudenz&rft.au=Pajarola%2C+Renato&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=4&rft.spage=2571&rft.epage=2588&rft_id=info:doi/10.1007%2Fs00371-023-02937-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon