High-dimensional scalar function visualization using principal parameterizations
Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters....
Uložené v:
| Vydané v: | The Visual computer Ročník 40; číslo 4; s. 2571 - 2588 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0178-2789, 1432-2315 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters. The method performs dimensionality reduction on the space formed by all possible partial functions (i.e., those defined by fixing one or more input parameters to specific values), which are projected to low-dimensional parameterized manifolds such as 3D curves, surfaces, and ensembles thereof. Our mapping provides a direct geometrical and visual interpretation in terms of Sobol’s celebrated method for variance-based sensitivity analysis. We furthermore contribute a practical realization of the proposed method by means of tensor decomposition, which enables accurate yet interactive integration and multilinear principal component analysis of high-dimensional models. |
|---|---|
| AbstractList | Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters. The method performs dimensionality reduction on the space formed by all possible partial functions (i.e., those defined by fixing one or more input parameters to specific values), which are projected to low-dimensional parameterized manifolds such as 3D curves, surfaces, and ensembles thereof. Our mapping provides a direct geometrical and visual interpretation in terms of Sobol’s celebrated method for variance-based sensitivity analysis. We furthermore contribute a practical realization of the proposed method by means of tensor decomposition, which enables accurate yet interactive integration and multilinear principal component analysis of high-dimensional models. |
| Author | Ballester-Ripoll, Rafael Pajarola, Renato Halter, Gaudenz |
| Author_xml | – sequence: 1 givenname: Rafael orcidid: 0000-0001-5831-2056 surname: Ballester-Ripoll fullname: Ballester-Ripoll, Rafael email: rafael.ballester@ie.edu organization: IE University – sequence: 2 givenname: Gaudenz surname: Halter fullname: Halter, Gaudenz organization: University of Zurich – sequence: 3 givenname: Renato surname: Pajarola fullname: Pajarola, Renato organization: University of Zurich |
| BookMark | eNqFkE1LAzEQhoNUsK3-AU8LnqNJJtskRylqhYIe9BxiNqkp29012RX015t-gOChHkKY4X2GmWeCRk3bOIQuKbmmhIibRAgIigmD_BQIzE_QmHJgmAEtR2hMqJCYCanO0CSlNcm14GqMnhdh9Y6rsHFNCm1j6iJZU5tY-KGxfe4UnyENpg7fZlcNKTSroouhsaHL6c5Es3G9i4dAOken3tTJXRz-KXq9v3uZL_Dy6eFxfrvEFrjosXJKWagsJwCMG-HkG8w8eOZkxUubt6WqNFBWILmUSjhXihkrmeeV8ar0MEVX-7ldbD8Gl3q9boeYD0ga8kwpiaLqv5RgjFGSU3KfsrFNKTqvbeh35_TRhFpToreW9d6yzpb1zrLmGWV_0OxmY-LXcQj2UNqKXLn4u9UR6gdgg5Fb |
| CitedBy_id | crossref_primary_10_1007_s00371_023_03235_9 |
| Cites_doi | 10.1006/jcom.2001.0588 10.1137/17M1160252 10.1016/j.probengmech.2013.02.002 10.1073/pnas.88.20.9107 10.1109/TVCG.2011.244 10.1111/cgf.13177 10.1109/TVCG.2010.190 10.1109/TVCG.2010.213 10.1016/j.laa.2009.07.024 10.1109/MSP.2014.2329429 10.1007/3-540-47969-4_30 10.1109/TVCG.2016.2640960 10.1109/TVCG.2014.2346321 10.1007/s10596-017-9641-4 10.1007/978-1-4899-7547-8_5 10.1111/cgf.13176 10.1109/TVCG.2011.248 10.1137/1.9781611973860 10.1002/gamm.201310004 10.1137/090752286 10.1109/TSMCB.2003.808183 10.1016/j.foodqual.2016.06.011 10.1002/9780470725184 10.1073/pnas.95.24.14190 10.1137/15M1036919 10.1109/VAST.2010.5652460 10.1109/TVCG.2007.70406 10.1137/07070111X 10.1109/VISUAL.1993.398859 10.2172/1733296 10.1016/j.ress.2008.11.012 10.1162/jocn.1991.3.1.71 10.1145/3002151.3002167 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00371-023-02937-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1432-2315 |
| EndPage | 2588 |
| ExternalDocumentID | 10_1007_s00371_023_02937_4 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c347t-9e99c3dc403324a7e8b36f3f2e8d45c178195a35d3848897ee576252f4daf95f3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001019486000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-2789 |
| IngestDate | Wed Nov 05 04:13:16 EST 2025 Wed Nov 05 09:17:38 EST 2025 Sat Nov 29 02:23:31 EST 2025 Tue Nov 18 22:27:44 EST 2025 Fri Feb 21 02:41:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Dimensionality reduction Tensor decompositions Sensitivity analysis Scientific visualization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-9e99c3dc403324a7e8b36f3f2e8d45c178195a35d3848897ee576252f4daf95f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5831-2056 |
| PQID | 3033722210 |
| PQPubID | 2043737 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3033880919 proquest_journals_3033722210 crossref_citationtrail_10_1007_s00371_023_02937_4 crossref_primary_10_1007_s00371_023_02937_4 springer_journals_10_1007_s00371_023_02937_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | International Journal of Computer Graphics |
| PublicationTitle | The Visual computer |
| PublicationTitleAbbrev | Vis Comput |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | AnJOwenABQuasi-regressionJ. Complex.2001174588607188166010.1006/jcom.2001.0588 ttrecipes: a high-level Python library of tensor train numerical utilities. https://github.com/rballester/ttrecipes GallagherMDownsTVisualization of learning in multilayer perceptron networks using principal component analysisIEEE Trans. Syst., Man, Cybern., Part B2003331283410.1109/TSMCB.2003.808183 Chan, Y.H., Correa, C.D., Ma, K.L.: Flow-based scatterplots for sensitivity analysis. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 43 – 50 (2010) OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286 Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and CDC2 kinase. In: National Academy of Sciences of the United States of America, vol. 88, no. 20, pp. 9107–9111 (1991) Torsney-WeirTSaadAMöllerTHegeHCWeberBVerbavatzJMTuner: principled parameter finding for image segmentation algorithms using visual response surface explorationIEEE Trans. Vis. Comput. Graph.201117121892190110.1109/TVCG.2011.248 Bolado-Lavin, R., Castaings, W., Tarantola, S.: Contribution to the sample mean plot for graphical and numerical sensitivity analysis. Reliab. Eng. Syst. Saf. 94(6), 1041–1049 (2009). https://doi.org/10.1016/j.ress.2008.11.012. www.sciencedirect.com/science/article/pii/S0951832008002743 ConstantinePGActive Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies2015PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611973860 DiazPConstantinePGKalmbachKJonesEPankavichSA modified SEIR model for the spread of Ebola in western Africa and metrics for resource allocationAppl. Math. Comput.20183241411553743663 TurkMPentlandAEigenfaces for recognitionJ. Cogn. Neurosci.199131718610.1162/jocn.1991.3.1.71 KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X Ballester-RipollRParedesEGPajarolaRTensor algorithms for advanced sensitivity metricsSIAM/ASA J. Uncertain. Quant.20186311721197384629610.1137/17M1160252 Gardner, T.S., Dolnik, M., Collins, J.J.: A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. In: National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14,190–14,195 (1998) BigoniDEngsig-KarupAMarzoukYSpectral tensor-train decompositionSIAM J. Sci. Comput.2016384A2405A2439353447310.1137/15M1036919 Iooss, B., Lemaître, P.: A Review on Global Sensitivity Analysis Methods, pp. 101–122. Springer, Boston (2015) LiuSMaljovecDWangBBremerPTPascucciVVisualizing high-dimensional data: advances in the past decadeIEEE Trans. Vis. Comput. Graph.20172331249126810.1109/TVCG.2016.2640960 van Wijk, J.J., van Liere, R.: HyperSlice: visualization of scalar functions of many variables. In: Proceedings IEEE VIS, pp. 119–125 (1993) BanzhafJFWeighted voting doesn’t work: a mathematical analysisRutgers Law Rev.196519317343 OseledetsIVTyrtyshnikovETT-cross approximation for multidimensional arraysLinear Algebra Appl.201043217088256645910.1016/j.laa.2009.07.024 SedlmairMHeinzlCBrucknerSPiringerHMöllerTVisual parameter space analysis: a conceptual frameworkIEEE Trans. Vis. Comput. Graph.201420122161217010.1109/TVCG.2014.2346321 ttpy: a tensor train toolbox implemented in Python. http://github.com/oseledets/ttpy Sobol’IMSensitivity estimates for nonlinear mathematical models (in Russian)Math. Models19902112118 Fruth, J., Roustant, O., Muehlenstaedt, T.: The fanovaGraph package: visualization of interaction structures and construction of block-additive kriging models. HAL preprint 00795229 (2013). https://hal.archives-ouvertes.fr/hal-00795229 VervlietNDebalsOSorberLLathauwerLDBreaking the curse of dimensionality using decompositions of incomplete tensors: tensor-based scientific computing in big data analysisIEEE Signal Process. Mag.2014315717910.1109/MSP.2014.2329429 GrasedyckLKressnerDToblerCA literature survey of low-rank tensor approximation techniquesGAMM-Mitteilungen20133615378309591410.1002/gamm.201310004 Torsney-WeirTSedlmairMMöllerTSliceplorer: 1D slices for multi-dimensional continuous functionsComput. Graph. Forum201736316717710.1111/cgf.13177 Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: Tensorfaces. In: European Conference on Computer Vision, pp. 447–460 (2002) Sedlmair, M., Brehmer, M., Ingram, S., Munzner, T.: Dimensionality reduction in the wild: gaps and guidance. Tech. Rep. TR-2012-03, University of British Columbia, Department of Computer Science (2012) ShaoLMahajanASchreckTLehmannDJInteractive regression lens for exploring scatter plotsComput. Graph. Forum201736315716610.1111/cgf.13176 WuQXiaTChenCLinHYSWangHYuYHierarchical tensor approximation of multidimensional visual dataIEEE Trans. Vis. Comput. Graph.200814118619910.1109/TVCG.2007.70406 GerberSBremerPTPascucciVWhitakerRVisual exploration of high dimensional scalar functionsIEEE Trans. Vis. Comput. Graph.20101661271128010.1109/TVCG.2010.213 Ward, M.O., LeBlanc, J.T., Tipnis, R.: N-land: a graphical tool for exploring N-dimensional data. In: Proceedings Computer Graphics International, pp. 95–116 (1994) Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley (2008) InsuastyEVan den HofPMJWeilandSJansenJDFlow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approachComput. Geosci.2017214645663367164810.1007/s10596-017-9641-4 CasturaJCBakerAKRossCFUsing contrails and animated sequences to visualize uncertainty in dynamic sensory profiles obtained from temporal check-all-that-apply (TCATA) dataFood Qual. Prefer.2016549010010.1016/j.foodqual.2016.06.011 DubourgVSudretBDeheegerFMetamodel-based importance sampling for structural reliability analysisProbab. Eng. Mech.201333475710.1016/j.probengmech.2013.02.002 Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: Sobol tensor trains for global sensitivity analysis. ArXiv e-print arXiv:1712.00233 (2017) Gorodetsky, A.A., Jakeman, J.D.: Gradient-based optimization for regression in the functional tensor-train format. ArXiv e-print (2018). arxiv:1801.00885 Knutsson, H.: Representing local structure using tensors. Tech. Rep. LiTH-ISY-I, 8765-4321, Computer Vision Laboratory, Linköping University (1989) BrucknerSMoellerTResult-driven exploration of simulation parameter spaces for visual effects designIEEE Trans. Vis. Comput. Graph.20101661467147510.1109/TVCG.2010.190 CorreaCLindstromPBremerPTTopological spines: a structure-preserving visual representation of scalar fieldsIEEE Trans. Vis. Comput. Graph.201117121842185110.1109/TVCG.2011.244 Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: A surrogate visualization model using the tensor train format. In: SIGGRAPH ASIA 2016 Symposium on Visualization, pp. 13:1–13:8 (2016) Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. In: Proceedings Eurographics (State of the Art Reports), pp. 95–116 (2013) T Torsney-Weir (2937_CR37) 2011; 17 D Bigoni (2937_CR8) 2016; 38 IV Oseledets (2937_CR31) 2010; 432 PG Constantine (2937_CR13) 2015 TG Kolda (2937_CR28) 2009; 51 IV Oseledets (2937_CR30) 2011; 33 V Dubourg (2937_CR16) 2013; 33 S Bruckner (2937_CR10) 2010; 16 2937_CR22 2937_CR21 2937_CR43 J An (2937_CR3) 2001; 17 2937_CR42 2937_CR26 N Vervliet (2937_CR41) 2014; 31 2937_CR24 T Torsney-Weir (2937_CR38) 2017; 36 JF Banzhaf (2937_CR7) 1965; 19 2937_CR27 E Insuasty (2937_CR25) 2017; 21 L Shao (2937_CR35) 2017; 36 M Turk (2937_CR39) 1991; 3 M Sedlmair (2937_CR34) 2014; 20 S Gerber (2937_CR20) 2010; 16 Q Wu (2937_CR44) 2008; 14 2937_CR4 2937_CR5 JC Castura (2937_CR11) 2016; 54 2937_CR40 2937_CR9 2937_CR33 R Ballester-Ripoll (2937_CR6) 2018; 6 S Liu (2937_CR29) 2017; 23 2937_CR32 IM Sobol (2937_CR36) 1990; 2 C Correa (2937_CR14) 2011; 17 M Gallagher (2937_CR18) 2003; 33 2937_CR1 2937_CR2 2937_CR12 2937_CR19 2937_CR17 P Diaz (2937_CR15) 2018; 324 L Grasedyck (2937_CR23) 2013; 36 |
| References_xml | – reference: DubourgVSudretBDeheegerFMetamodel-based importance sampling for structural reliability analysisProbab. Eng. Mech.201333475710.1016/j.probengmech.2013.02.002 – reference: BrucknerSMoellerTResult-driven exploration of simulation parameter spaces for visual effects designIEEE Trans. Vis. Comput. Graph.20101661467147510.1109/TVCG.2010.190 – reference: OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286 – reference: VervlietNDebalsOSorberLLathauwerLDBreaking the curse of dimensionality using decompositions of incomplete tensors: tensor-based scientific computing in big data analysisIEEE Signal Process. Mag.2014315717910.1109/MSP.2014.2329429 – reference: OseledetsIVTyrtyshnikovETT-cross approximation for multidimensional arraysLinear Algebra Appl.201043217088256645910.1016/j.laa.2009.07.024 – reference: Ward, M.O., LeBlanc, J.T., Tipnis, R.: N-land: a graphical tool for exploring N-dimensional data. In: Proceedings Computer Graphics International, pp. 95–116 (1994) – reference: Fruth, J., Roustant, O., Muehlenstaedt, T.: The fanovaGraph package: visualization of interaction structures and construction of block-additive kriging models. HAL preprint 00795229 (2013). https://hal.archives-ouvertes.fr/hal-00795229 – reference: Bolado-Lavin, R., Castaings, W., Tarantola, S.: Contribution to the sample mean plot for graphical and numerical sensitivity analysis. Reliab. Eng. Syst. Saf. 94(6), 1041–1049 (2009). https://doi.org/10.1016/j.ress.2008.11.012. www.sciencedirect.com/science/article/pii/S0951832008002743’ – reference: Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: Sobol tensor trains for global sensitivity analysis. ArXiv e-print arXiv:1712.00233 (2017) – reference: van Wijk, J.J., van Liere, R.: HyperSlice: visualization of scalar functions of many variables. In: Proceedings IEEE VIS, pp. 119–125 (1993) – reference: Sedlmair, M., Brehmer, M., Ingram, S., Munzner, T.: Dimensionality reduction in the wild: gaps and guidance. Tech. Rep. TR-2012-03, University of British Columbia, Department of Computer Science (2012) – reference: CorreaCLindstromPBremerPTTopological spines: a structure-preserving visual representation of scalar fieldsIEEE Trans. Vis. Comput. Graph.201117121842185110.1109/TVCG.2011.244 – reference: CasturaJCBakerAKRossCFUsing contrails and animated sequences to visualize uncertainty in dynamic sensory profiles obtained from temporal check-all-that-apply (TCATA) dataFood Qual. Prefer.2016549010010.1016/j.foodqual.2016.06.011 – reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X – reference: Knutsson, H.: Representing local structure using tensors. Tech. Rep. LiTH-ISY-I, 8765-4321, Computer Vision Laboratory, Linköping University (1989) – reference: Chan, Y.H., Correa, C.D., Ma, K.L.: Flow-based scatterplots for sensitivity analysis. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 43 – 50 (2010) – reference: ConstantinePGActive Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies2015PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611973860 – reference: Gorodetsky, A.A., Jakeman, J.D.: Gradient-based optimization for regression in the functional tensor-train format. ArXiv e-print (2018). arxiv:1801.00885 – reference: Sobol’IMSensitivity estimates for nonlinear mathematical models (in Russian)Math. Models19902112118 – reference: GallagherMDownsTVisualization of learning in multilayer perceptron networks using principal component analysisIEEE Trans. Syst., Man, Cybern., Part B2003331283410.1109/TSMCB.2003.808183 – reference: BanzhafJFWeighted voting doesn’t work: a mathematical analysisRutgers Law Rev.196519317343 – reference: LiuSMaljovecDWangBBremerPTPascucciVVisualizing high-dimensional data: advances in the past decadeIEEE Trans. Vis. Comput. Graph.20172331249126810.1109/TVCG.2016.2640960 – reference: Torsney-WeirTSedlmairMMöllerTSliceplorer: 1D slices for multi-dimensional continuous functionsComput. Graph. Forum201736316717710.1111/cgf.13177 – reference: GrasedyckLKressnerDToblerCA literature survey of low-rank tensor approximation techniquesGAMM-Mitteilungen20133615378309591410.1002/gamm.201310004 – reference: Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. In: Proceedings Eurographics (State of the Art Reports), pp. 95–116 (2013) – reference: Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and CDC2 kinase. In: National Academy of Sciences of the United States of America, vol. 88, no. 20, pp. 9107–9111 (1991) – reference: BigoniDEngsig-KarupAMarzoukYSpectral tensor-train decompositionSIAM J. Sci. Comput.2016384A2405A2439353447310.1137/15M1036919 – reference: Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley (2008) – reference: ShaoLMahajanASchreckTLehmannDJInteractive regression lens for exploring scatter plotsComput. Graph. Forum201736315716610.1111/cgf.13176 – reference: SedlmairMHeinzlCBrucknerSPiringerHMöllerTVisual parameter space analysis: a conceptual frameworkIEEE Trans. Vis. Comput. Graph.201420122161217010.1109/TVCG.2014.2346321 – reference: Gardner, T.S., Dolnik, M., Collins, J.J.: A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. In: National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14,190–14,195 (1998) – reference: Torsney-WeirTSaadAMöllerTHegeHCWeberBVerbavatzJMTuner: principled parameter finding for image segmentation algorithms using visual response surface explorationIEEE Trans. Vis. Comput. Graph.201117121892190110.1109/TVCG.2011.248 – reference: AnJOwenABQuasi-regressionJ. Complex.2001174588607188166010.1006/jcom.2001.0588 – reference: Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: A surrogate visualization model using the tensor train format. In: SIGGRAPH ASIA 2016 Symposium on Visualization, pp. 13:1–13:8 (2016) – reference: ttrecipes: a high-level Python library of tensor train numerical utilities. https://github.com/rballester/ttrecipes – reference: DiazPConstantinePGKalmbachKJonesEPankavichSA modified SEIR model for the spread of Ebola in western Africa and metrics for resource allocationAppl. Math. Comput.20183241411553743663 – reference: GerberSBremerPTPascucciVWhitakerRVisual exploration of high dimensional scalar functionsIEEE Trans. Vis. Comput. Graph.20101661271128010.1109/TVCG.2010.213 – reference: Iooss, B., Lemaître, P.: A Review on Global Sensitivity Analysis Methods, pp. 101–122. Springer, Boston (2015) – reference: Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: Tensorfaces. In: European Conference on Computer Vision, pp. 447–460 (2002) – reference: ttpy: a tensor train toolbox implemented in Python. http://github.com/oseledets/ttpy – reference: Ballester-RipollRParedesEGPajarolaRTensor algorithms for advanced sensitivity metricsSIAM/ASA J. Uncertain. Quant.20186311721197384629610.1137/17M1160252 – reference: TurkMPentlandAEigenfaces for recognitionJ. Cogn. Neurosci.199131718610.1162/jocn.1991.3.1.71 – reference: InsuastyEVan den HofPMJWeilandSJansenJDFlow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approachComput. Geosci.2017214645663367164810.1007/s10596-017-9641-4 – reference: WuQXiaTChenCLinHYSWangHYuYHierarchical tensor approximation of multidimensional visual dataIEEE Trans. Vis. Comput. Graph.200814118619910.1109/TVCG.2007.70406 – volume: 17 start-page: 588 issue: 4 year: 2001 ident: 2937_CR3 publication-title: J. Complex. doi: 10.1006/jcom.2001.0588 – volume: 6 start-page: 1172 issue: 3 year: 2018 ident: 2937_CR6 publication-title: SIAM/ASA J. Uncertain. Quant. doi: 10.1137/17M1160252 – volume: 33 start-page: 47 year: 2013 ident: 2937_CR16 publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2013.02.002 – ident: 2937_CR21 doi: 10.1073/pnas.88.20.9107 – volume: 17 start-page: 1842 issue: 12 year: 2011 ident: 2937_CR14 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2011.244 – volume: 36 start-page: 167 issue: 3 year: 2017 ident: 2937_CR38 publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13177 – ident: 2937_CR2 – volume: 324 start-page: 141 year: 2018 ident: 2937_CR15 publication-title: Appl. Math. Comput. – volume: 19 start-page: 317 year: 1965 ident: 2937_CR7 publication-title: Rutgers Law Rev. – volume: 16 start-page: 1467 issue: 6 year: 2010 ident: 2937_CR10 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2010.190 – volume: 16 start-page: 1271 issue: 6 year: 2010 ident: 2937_CR20 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2010.213 – volume: 432 start-page: 70 issue: 1 year: 2010 ident: 2937_CR31 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2009.07.024 – volume: 31 start-page: 71 issue: 5 year: 2014 ident: 2937_CR41 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2329429 – ident: 2937_CR40 doi: 10.1007/3-540-47969-4_30 – volume: 23 start-page: 1249 issue: 3 year: 2017 ident: 2937_CR29 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2016.2640960 – volume: 20 start-page: 2161 issue: 12 year: 2014 ident: 2937_CR34 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2014.2346321 – volume: 2 start-page: 112 year: 1990 ident: 2937_CR36 publication-title: Math. Models – volume: 21 start-page: 645 issue: 4 year: 2017 ident: 2937_CR25 publication-title: Comput. Geosci. doi: 10.1007/s10596-017-9641-4 – ident: 2937_CR26 doi: 10.1007/978-1-4899-7547-8_5 – ident: 2937_CR24 – volume: 36 start-page: 157 issue: 3 year: 2017 ident: 2937_CR35 publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13176 – volume: 17 start-page: 1892 issue: 12 year: 2011 ident: 2937_CR37 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2011.248 – volume-title: Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies year: 2015 ident: 2937_CR13 doi: 10.1137/1.9781611973860 – volume: 36 start-page: 53 issue: 1 year: 2013 ident: 2937_CR23 publication-title: GAMM-Mitteilungen doi: 10.1002/gamm.201310004 – volume: 33 start-page: 2295 issue: 5 year: 2011 ident: 2937_CR30 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090752286 – volume: 33 start-page: 28 issue: 1 year: 2003 ident: 2937_CR18 publication-title: IEEE Trans. Syst., Man, Cybern., Part B doi: 10.1109/TSMCB.2003.808183 – ident: 2937_CR5 – volume: 54 start-page: 90 year: 2016 ident: 2937_CR11 publication-title: Food Qual. Prefer. doi: 10.1016/j.foodqual.2016.06.011 – ident: 2937_CR32 doi: 10.1002/9780470725184 – ident: 2937_CR19 doi: 10.1073/pnas.95.24.14190 – ident: 2937_CR1 – volume: 38 start-page: A2405 issue: 4 year: 2016 ident: 2937_CR8 publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1036919 – ident: 2937_CR12 doi: 10.1109/VAST.2010.5652460 – volume: 14 start-page: 186 issue: 1 year: 2008 ident: 2937_CR44 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2007.70406 – ident: 2937_CR17 – ident: 2937_CR33 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 2937_CR28 publication-title: SIAM Rev. doi: 10.1137/07070111X – ident: 2937_CR43 doi: 10.1109/VISUAL.1993.398859 – ident: 2937_CR22 doi: 10.2172/1733296 – ident: 2937_CR9 doi: 10.1016/j.ress.2008.11.012 – volume: 3 start-page: 71 issue: 1 year: 1991 ident: 2937_CR39 publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1991.3.1.71 – ident: 2937_CR4 doi: 10.1145/3002151.3002167 – ident: 2937_CR27 – ident: 2937_CR42 |
| SSID | ssj0017749 |
| Score | 2.3670933 |
| Snippet | Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2571 |
| SubjectTerms | Artificial Intelligence Computer Graphics Computer Science Decomposition Dimensional analysis Image Processing and Computer Vision Original Article Parameter sensitivity Principal components analysis Scalars Sensitivity analysis Tensors Variables Variance analysis Visualization |
| SummonAdditionalLinks | – databaseName: Springer Journals - Owned dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAO3CBS0yRtc0SIidM08dJuVZumaBKMaR37_TjpY4AYEhx6SvqQncSfa_szwLnmIkoTxmno6YAKHUiaovNDAz-XWmsWmEy4ZhPhYBCNRmpYFYUVdbZ7HZJ0J3VT7ObY5SjaGLzQqFKxDhto7iLbsOHu_qmJHSCgcaCXoX9k6zyrUpmfn_HVHC0x5rewqLM2_fb_vnMXdip0Sa7K5bAHa2bSgXbduYFUG7kD259oCPdhaJM9aGZ5_kuODlKg5pIZsUbPKo4sxoUtvixLNonNlX8m0_I3Pc629OGvNq2mruk8gMf-zcP1La06LVDUVTinyiileaaFxxFgJaGJUh7kPPdNlAmpUZJMyYTLjEe44VVoDLopvvRzkSW5kjk_hNbkbWKOgCiWaC8V6AgJ28mEqUR5RqKTwwLEooZ1gdUCj3VFQ267YbzEDYGyE2CMAoydAGPRhYvmnmlJwvHr7F6tx7jakEWMlpqHiIWYt3IYTzLFVBcua7Uuh1e_7Phv009gy0dUVKb-9KA1n72bU9jUi_m4mJ25dfwBeTHqcQ priority: 102 providerName: Springer Nature |
| Title | High-dimensional scalar function visualization using principal parameterizations |
| URI | https://link.springer.com/article/10.1007/s00371-023-02937-4 https://www.proquest.com/docview/3033722210 https://www.proquest.com/docview/3033880919 |
| Volume | 40 |
| WOSCitedRecordID | wos001019486000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-2315 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: P5Z dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-2315 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: K7- dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-2315 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH8R8KAHv40okh28aSNd2209GTUQExOy4EeIl2V0nSFRQIb8_b52G6gJXjxsl3Vp01_7Ptr3fg_gTDEeDGLKiN9SHuHKE2SAzg_x3FQopainE26LTfjdbtDvy7A4cMuKsMpSJlpBnYyVOSO_RFHLfFRmtHU1-SCmapS5XS1KaFSgZlgSTOmGULwsbhHQtLHmL0VPyWR8FkkzNnXOctUR1Fj4oIom_KdiWlqbvy5Ird7pbP93xDuwVVicznW-RHZhTY_2YPMbD-E-hCbagySG6D8n6XAyhC6eOkbrGeSc-TAz2Zd5zqZjguVfnUl-To-tDX_4u4mrKZM6D-Cp0368vSNFqQWCYPkzIrWUiiWK45hdHvs6GDAvZamrg4QLhRNIpYiZSFiAO176WqOf4go35UmcSpGyQ6iOxiN9BI6ksWoNOHpC3JQyoTKWLS3Qy6EeGqOa1oGW8xypgofclMN4ixYMyhabCLGJLDYRr8P54p9JzsLxZ-tGCUhU7MgsWqKx8jOKMkllHS5KxJefV3d2_HdnJ7DhohmUx_o0oDqbfupTWFfz2TCbNqF20-6GvSZU7n3StIsX372H5y8jtPGU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkoADsLsgCmU3BzixFnXsxPEBIcRDoELFASRu2dRxUCUopSlF_Cl-IzNO0rJIcOPAISc7dhJ_nvkm45kB2DRCRu2EC6YaJmTShAFro_HDQj8LjDE8tKl0xSZUqxVdX-uLCXipYmHoWGUlE52gTu8N_SPfQVErFCoz3tjrPTCqGkXe1aqERgGLpn1-QpMt3z09xPXd8v3jo8uDE1ZWFWD4XGrAtNXaiNRIHNCXibJRW4SZyHwbpTIwXJFnKRFBKiIEt1bWIiX3Az-TaZLpIBM47iRMSxEp2ldNxUZeC6RSjm7jGIwiTMsgHReq53LjMdSQeCElYPJ_RThmt-8csk7PHS9-ty-0BAslo_b2iy3wAyZs9yfMv8mz-Asu6DQLS6mQQZGExMsRmknfI61OyPSGnZyiS4uYVI-CAW68XuGHwN6UH_2Ozg1VQavLcPUlr7QCU937rl0FT_PENNoSLT1JpVq4TnTDBmjF8RDJtuU14NW6xqbMs07lPm7jUYZoh4UYsRA7LMSyBtuje3pFlpFPe9crAMSlxMnj8ep_2IyiWnNdg78VwsbNH0-29vlkf2D25PL8LD47bTXXYc5Hyleca6rD1KD_aDdgxgwHnbz_220VD_59NfJeARLHSUk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVs3Bmy7NZjePPYpaFKUUfNBbSDYbKWgsTezvdzavVrGCeMhpNw9mkp1vsvN9A3AqGffCgDLimtIhXDo2CTH5IY4V21JK6qiI580m3H7fGw7FYI7Fn1e7V1uSBadBqzQlWXccxd2a-JYrzRGMN3hggCV8GVa4LqTX-frDc72PgOAmB8AUcyXN-SxpMz9f42tomuHNb1ukeeTpNf__zFuwWaJO46J4TbZhSSUtaFYdHYzyA2_Bxpw84Q4MdBEIibT-f6HdYaTo0WBi6GCoHWpMR6kmZRZUTkPX0L8Y4-L3Pc7WsuJvutym4nruwlPv-vHyhpQdGAj60M2IUEJIFkluMgRegau8kDkxiy3lRdyWaFUq7IDZEfNwIRCuUpi-WLYV8yiIhR2zPWgk74naB0PQQJohxwSJ6w4nVATCVDYmP9RBjKpoG2hlfF-W8uS6S8arXwsr5wb00YB-bkCft-GsPmdciHP8OrtT-dQvP9TUxwjOXMRI1Fw4jCucoKIN55WLZ8OLb3bwt-knsDa46vn3t_27Q1i3EDgV1UEdaGSTD3UEq3KajdLJcf56fwJ7dPY5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-dimensional+scalar+function+visualization+using+principal+parameterizations&rft.jtitle=The+Visual+computer&rft.au=Ballester-Ripoll%2C+Rafael&rft.au=Halter%2C+Gaudenz&rft.au=Pajarola%2C+Renato&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=4&rft.spage=2571&rft.epage=2588&rft_id=info:doi/10.1007%2Fs00371-023-02937-4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |