High-dimensional scalar function visualization using principal parameterizations

Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Visual computer Ročník 40; číslo 4; s. 2571 - 2588
Hlavní autoři: Ballester-Ripoll, Rafael, Halter, Gaudenz, Pajarola, Renato
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Témata:
ISSN:0178-2789, 1432-2315
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters. The method performs dimensionality reduction on the space formed by all possible partial functions (i.e., those defined by fixing one or more input parameters to specific values), which are projected to low-dimensional parameterized manifolds such as 3D curves, surfaces, and ensembles thereof. Our mapping provides a direct geometrical and visual interpretation in terms of Sobol’s celebrated method for variance-based sensitivity analysis. We furthermore contribute a practical realization of the proposed method by means of tensor decomposition, which enables accurate yet interactive integration and multilinear principal component analysis of high-dimensional models.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-2789
1432-2315
DOI:10.1007/s00371-023-02937-4