EBStereo: edge-based loss function for real-time stereo matching
Deep learning-based stereo matching has made significant progress, but it still faces challenges: The disparity prediction error maps of current models show that errors are concentrated primarily on object boundaries. We find that executing the smooth L1 loss function on the entire region during ste...
Gespeichert in:
| Veröffentlicht in: | The Visual computer Jg. 40; H. 4; S. 2975 - 2986 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-2789, 1432-2315 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deep learning-based stereo matching has made significant progress, but it still faces challenges: The disparity prediction error maps of current models show that errors are concentrated primarily on object boundaries. We find that executing the smooth L1 loss function on the entire region during stereo matching model training cannot effectively address the imbalance between edge regions and flat regions, resulting in poor disparity estimates for edge regions. In this paper, a new weighted smooth L1 loss function, which considers the loss function calculation on edge regions and can yield improved accuracy, is proposed. An improved bilateral grid upsampling module is also added to the training model, and a strategy is adopted to balance the computational consumption introduced by the new loss function-weighted item, allowing for real-time inference. Extensive experiments conducted on two datasets, i.e., Scene Flow and KITTI, verify the simplicity and effectiveness of this approach. Under the condition of 33 frames per second (FPS), the endpoint error of the proposed model can be improved to 0.63. In addition, the proposed edge-based loss function can be easily embedded into many existing stereo matching networks, such as GwcNet, AANet, and PSMNet. After embedding the proposed edge-based loss function, the reduction rates of the endpoint errors of the existing models can be improved to 3.5%, 11.6%, and 27.2% for GwcNet, AANet, and PSMNet, respectively. |
|---|---|
| AbstractList | Deep learning-based stereo matching has made significant progress, but it still faces challenges: The disparity prediction error maps of current models show that errors are concentrated primarily on object boundaries. We find that executing the smooth L1 loss function on the entire region during stereo matching model training cannot effectively address the imbalance between edge regions and flat regions, resulting in poor disparity estimates for edge regions. In this paper, a new weighted smooth L1 loss function, which considers the loss function calculation on edge regions and can yield improved accuracy, is proposed. An improved bilateral grid upsampling module is also added to the training model, and a strategy is adopted to balance the computational consumption introduced by the new loss function-weighted item, allowing for real-time inference. Extensive experiments conducted on two datasets, i.e., Scene Flow and KITTI, verify the simplicity and effectiveness of this approach. Under the condition of 33 frames per second (FPS), the endpoint error of the proposed model can be improved to 0.63. In addition, the proposed edge-based loss function can be easily embedded into many existing stereo matching networks, such as GwcNet, AANet, and PSMNet. After embedding the proposed edge-based loss function, the reduction rates of the endpoint errors of the existing models can be improved to 3.5%, 11.6%, and 27.2% for GwcNet, AANet, and PSMNet, respectively. |
| Author | Wu, Dongliu Lu, Shenglian Chen, Ming Bi, Weijie |
| Author_xml | – sequence: 1 givenname: Weijie surname: Bi fullname: Bi, Weijie organization: School of Computer Science and Engineering, Guangxi Normal University – sequence: 2 givenname: Ming surname: Chen fullname: Chen, Ming email: hustcm@hotmail.com organization: School of Computer Science and Engineering, Guangxi Normal University, Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University – sequence: 3 givenname: Dongliu surname: Wu fullname: Wu, Dongliu organization: School of Computer Science and Engineering, Guangxi Normal University – sequence: 4 givenname: Shenglian surname: Lu fullname: Lu, Shenglian organization: School of Computer Science and Engineering, Guangxi Normal University, Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University |
| BookMark | eNqFkE1LAzEQhoNUsK3-AU8LnqOTzG6T9aSW-gEFD-o5ZDeTuqXdrcmW4r932xUED3oaBp5nPt4RG9RNTYydC7gUAOoqAqASHCRyQADJd0dsKFKUXKLIBmwIQmkulc5P2CjGJXS9SvMhu5ndvbQUqLlOyC2IFzaSS1ZNjInf1mVbNXXim5AEsiveVmtK4gFP1rYt36t6ccqOvV1FOvuuY_Z2P3udPvL588PT9HbOS0xVy7WTuVMyz3xqXeqkRPKqnBReOQBLKZJEL8oCC0kySwuBQjhQmcKJdBoljtlFP3cTmo8txdYsm22ou5UGAVFr0CL7j1JS5FneUbqnytA9Gsibsmrt_tc22GplBJh9qqZP1XSpmkOqZtep8pe6CdXahs-_Jeyl2MH1gsLPVX9YX3Ygils |
| CitedBy_id | crossref_primary_10_3390_electronics13112024 crossref_primary_10_1364_AO_564771 |
| Cites_doi | 10.1109/TCSVT.2009.2020478 10.1145/3072959.3073592 10.1007/s11432-019-2803-x 10.1109/TPAMI.2007.1043 10.1145/2980179.2982423 10.1145/1276377.1276506 10.1109/TPAMI.1986.4767851 10.1023/A:1014573219977 10.1109/TPAMI.2007.1166 10.1007/s00371-021-02228-w 10.1007/s00371-018-1491-0 10.1007/s00034-009-9130-7 10.1016/j.eswa.2022.118573 10.1109/TPAMI.2003.1206509 10.1109/LSP.2021.3066125 10.1016/j.engstruct.2022.115158 10.1109/LRA.2022.3143895 10.1016/j.compag.2021.106107 10.1109/CVPR.2019.00339 10.1109/ICCV.2019.00448 10.1109/ICCV.2015.316 10.1109/CVPR.2018.00920 10.1109/CVPR52688.2022.01264 10.1109/CVPR42600.2020.00203 10.1109/CVPR46437.2021.01592 10.5194/isprsannals-II-3-W5-427-2015 10.1109/CVPR46437.2021.00539 10.1109/CVPR.2019.00027 10.1109/WACV51458.2022.00075 10.1007/978-3-319-11752-2_3 10.1007/978-3-030-01234-2_39 10.1109/ICCV.2017.324 10.1109/ICCV48922.2021.00441 10.1109/CRV.2014.56 10.1007/11744085_44 10.1109/CVPR.2016.438 10.1609/aaai.v36i2.20056 10.1109/CVPR.2018.00567 10.1109/IVS.2013.6629487 10.1109/ICCVW.2017.108 10.1109/CVPR.2012.6248074 10.1007/978-3-030-20873-8_2 10.1109/CVPR.2015.7298767 10.1109/ICCV.2017.17 10.1007/978-3-030-01267-0_35 10.1109/ICRA40945.2020.9197031 10.1609/aaai.v34i07.6991 10.1109/CVPRW.2010.5543769 10.1109/ICASSP.2018.8461664 10.1109/ICCV.2001.937668 10.1109/CVPR.2016.90 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00371-023-03002-w |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1432-2315 |
| EndPage | 2986 |
| ExternalDocumentID | 10_1007_s00371_023_03002_w |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jilin Province grantid: 62062015 funderid: http://dx.doi.org/10.13039/100007847 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c347t-8d29d7295f4ad4d223ef7c6bf7d00ae43e23f1cb3b2e254b1311d0757362d8323 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001028383100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-2789 |
| IngestDate | Thu Nov 06 12:22:26 EST 2025 Wed Nov 05 08:56:56 EST 2025 Tue Nov 18 22:08:07 EST 2025 Sat Nov 29 02:23:31 EST 2025 Fri Feb 21 02:41:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Loss function Feature fusion Stereo matching Bilateral grid learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-8d29d7295f4ad4d223ef7c6bf7d00ae43e23f1cb3b2e254b1311d0757362d8323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3033721959 |
| PQPubID | 2043737 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_3033880815 proquest_journals_3033721959 crossref_citationtrail_10_1007_s00371_023_03002_w crossref_primary_10_1007_s00371_023_03002_w springer_journals_10_1007_s00371_023_03002_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | International Journal of Computer Graphics |
| PublicationTitle | The Visual computer |
| PublicationTitleAbbrev | Vis Comput |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | CR38 CR36 Gharbi, Chen, Barron, Hasinoff, Durand (CR32) 2017; 36 CR35 CR34 CR33 CR31 CR30 Xu, Wang, Wang, Sheng, Deng (CR42) 2021; 28 Bao, Wang, Xu, Guo, Hong, Zhang (CR3) 2020; 63 Canny (CR49) 1986; 6 CR2 CR4 CR5 Yoo, Han (CR12) 2009; 28 Zhang, Lu, Lafruit (CR13) 2009; 19 CR9 CR48 CR47 CR46 CR45 Li, Fan, Lv, Ma (CR26) 2022; 38 CR44 CR43 CR41 CR40 Tang, Huang, Chen, Chen, Zhou, Zhang, Sun (CR8) 2023; 274 Hirschmuller (CR14) 2007; 30 Cheng, Zhong, Harandi, Dai, Chang, Li, Drummond, Ge (CR51) 2020; 33 CR19 CR18 CR17 CR15 CR54 Shankar, Tjersland, Ma, Stone, Bajracharya (CR53) 2022; 7 CR52 Tang, Zhou, Wang, Zhang (CR6) 2023; 211 CR50 Chen, Adams, Wadhwa, Hasinoff (CR39) 2016; 35 Chen, Paris, Durand (CR37) 2007; 26 Li, Zhang, Zhong, Wang (CR16) 2019; 35 CR29 CR28 Sun, Zheng, Shum (CR10) 2003; 25 CR27 CR25 CR24 Lin, Tang, Zou, Wang (CR7) 2021; 184 CR23 CR22 CR21 CR20 Deng, Yang, Lin, Tang (CR11) 2007; 29 Scharstein, Szeliski (CR1) 2002; 47 3002_CR36 3002_CR34 3002_CR35 X Cheng (3002_CR51) 2020; 33 3002_CR38 Y Li (3002_CR16) 2019; 35 J Chen (3002_CR39) 2016; 35 K Zhang (3002_CR13) 2009; 19 3002_CR33 3002_CR30 M Gharbi (3002_CR32) 2017; 36 3002_CR31 3002_CR25 K Shankar (3002_CR53) 2022; 7 3002_CR23 3002_CR24 3002_CR29 3002_CR27 Y Tang (3002_CR8) 2023; 274 3002_CR28 J-C Yoo (3002_CR12) 2009; 28 D Scharstein (3002_CR1) 2002; 47 3002_CR21 3002_CR22 3002_CR20 3002_CR15 J Canny (3002_CR49) 1986; 6 Y Deng (3002_CR11) 2007; 29 3002_CR18 3002_CR19 3002_CR17 G Lin (3002_CR7) 2021; 184 H Hirschmuller (3002_CR14) 2007; 30 Y Tang (3002_CR6) 2023; 211 J Sun (3002_CR10) 2003; 25 3002_CR9 3002_CR50 3002_CR4 3002_CR5 3002_CR54 3002_CR52 3002_CR2 3002_CR47 3002_CR48 3002_CR45 3002_CR46 J Chen (3002_CR37) 2007; 26 X Li (3002_CR26) 2022; 38 Q Xu (3002_CR42) 2021; 28 3002_CR40 W Bao (3002_CR3) 2020; 63 3002_CR43 3002_CR44 3002_CR41 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 19 start-page: 1073 issue: 7 year: 2009 end-page: 1079 ident: CR13 article-title: Cross-based local stereo matching using orthogonal integral images publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2009.2020478 – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 12 ident: CR32 article-title: Deep bilateral learning for real-time image enhancement publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/3072959.3073592 – ident: CR4 – volume: 63 start-page: 1 issue: 11 year: 2020 end-page: 11 ident: CR3 article-title: Instereo2k: a large real dataset for stereo matching in indoor scenes publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-019-2803-x – volume: 29 start-page: 1068 issue: 6 year: 2007 end-page: 1079 ident: CR11 article-title: Stereo correspondence with occlusion handling in a symmetric patch-based graph-cuts model publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1043 – ident: CR35 – ident: CR29 – ident: CR54 – ident: CR25 – ident: CR21 – ident: CR46 – ident: CR19 – volume: 35 start-page: 1 issue: 6 year: 2016 end-page: 8 ident: CR39 article-title: Bilateral guided upsampling publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/2980179.2982423 – volume: 26 start-page: 103 issue: 3 year: 2007 ident: CR37 article-title: Real-time edge-aware image processing with the bilateral grid publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/1276377.1276506 – ident: CR15 – ident: CR50 – ident: CR9 – volume: 6 start-page: 679 year: 1986 end-page: 698 ident: CR49 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 47 start-page: 7 issue: 1 year: 2002 end-page: 42 ident: CR1 article-title: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1014573219977 – ident: CR36 – ident: CR5 – volume: 30 start-page: 328 issue: 2 year: 2007 end-page: 341 ident: CR14 article-title: Stereo processing by semiglobal matching and mutual information publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1166 – ident: CR18 – ident: CR43 – ident: CR47 – volume: 38 start-page: 3881 issue: 11 year: 2022 end-page: 3895 ident: CR26 article-title: Area-based correlation and non-local attention network for stereo matching publication-title: Vis. Comput. doi: 10.1007/s00371-021-02228-w – volume: 35 start-page: 257 year: 2019 end-page: 269 ident: CR16 article-title: An efficient stereo matching based on fragment matching publication-title: Vis. Comput. doi: 10.1007/s00371-018-1491-0 – ident: CR2 – ident: CR30 – volume: 28 start-page: 819 issue: 6 year: 2009 end-page: 843 ident: CR12 article-title: Fast normalized cross-correlation publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-009-9130-7 – ident: CR33 – volume: 211 year: 2023 ident: CR6 article-title: Fruit detection and positioning technology for a C. Abel orchard based on improved yolov4-tiny model and binocular stereo vision publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118573 – volume: 25 start-page: 787 issue: 7 year: 2003 end-page: 800 ident: CR10 article-title: Stereo matching using belief propagation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1206509 – ident: CR40 – ident: CR27 – ident: CR23 – volume: 28 start-page: 613 year: 2021 end-page: 617 ident: CR42 article-title: Deep bilateral learning for stereo image super-resolution publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2021.3066125 – volume: 274 year: 2023 ident: CR8 article-title: Novel visual crack width measurement based on backbone double-scale features for improved detection automation publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115158 – ident: CR44 – ident: CR48 – volume: 7 start-page: 2305 issue: 2 year: 2022 end-page: 2312 ident: CR53 article-title: A learned stereo depth system for robotic manipulation in homes publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3143895 – ident: CR38 – ident: CR52 – ident: CR17 – ident: CR31 – volume: 33 start-page: 22158 year: 2020 end-page: 22169 ident: CR51 article-title: Hierarchical neural architecture search for deep stereo matching publication-title: Adv. Neural. Inf. Process. Syst. – ident: CR34 – volume: 184 year: 2021 ident: CR7 article-title: Three-dimensional reconstruction of guava fruits and branches using instance segmentation and geometry analysis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106107 – ident: CR28 – ident: CR41 – ident: CR24 – ident: CR20 – ident: 3002_CR34 doi: 10.1109/CVPR.2019.00339 – ident: 3002_CR36 doi: 10.1109/ICCV.2019.00448 – ident: 3002_CR33 doi: 10.1109/ICCV.2015.316 – volume: 26 start-page: 103 issue: 3 year: 2007 ident: 3002_CR37 publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/1276377.1276506 – ident: 3002_CR29 doi: 10.1109/CVPR.2018.00920 – volume: 28 start-page: 819 issue: 6 year: 2009 ident: 3002_CR12 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-009-9130-7 – volume: 35 start-page: 257 year: 2019 ident: 3002_CR16 publication-title: Vis. Comput. doi: 10.1007/s00371-018-1491-0 – ident: 3002_CR23 doi: 10.1109/CVPR52688.2022.01264 – ident: 3002_CR31 doi: 10.1109/CVPR42600.2020.00203 – volume: 19 start-page: 1073 issue: 7 year: 2009 ident: 3002_CR13 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2009.2020478 – volume: 35 start-page: 1 issue: 6 year: 2016 ident: 3002_CR39 publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/2980179.2982423 – volume: 7 start-page: 2305 issue: 2 year: 2022 ident: 3002_CR53 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3143895 – volume: 28 start-page: 613 year: 2021 ident: 3002_CR42 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2021.3066125 – volume: 33 start-page: 22158 year: 2020 ident: 3002_CR51 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 38 start-page: 3881 issue: 11 year: 2022 ident: 3002_CR26 publication-title: Vis. Comput. doi: 10.1007/s00371-021-02228-w – ident: 3002_CR41 doi: 10.1109/CVPR46437.2021.01592 – ident: 3002_CR44 doi: 10.5194/isprsannals-II-3-W5-427-2015 – ident: 3002_CR54 doi: 10.1109/CVPR46437.2021.00539 – ident: 3002_CR21 doi: 10.1109/CVPR.2019.00027 – ident: 3002_CR24 doi: 10.1109/WACV51458.2022.00075 – ident: 3002_CR4 doi: 10.1007/978-3-319-11752-2_3 – ident: 3002_CR45 doi: 10.1007/978-3-030-01234-2_39 – volume: 29 start-page: 1068 issue: 6 year: 2007 ident: 3002_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1043 – ident: 3002_CR30 doi: 10.1109/ICCV.2017.324 – ident: 3002_CR40 doi: 10.1109/ICCV48922.2021.00441 – ident: 3002_CR27 doi: 10.1109/CRV.2014.56 – ident: 3002_CR38 doi: 10.1007/11744085_44 – volume: 63 start-page: 1 issue: 11 year: 2020 ident: 3002_CR3 publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-019-2803-x – volume: 184 year: 2021 ident: 3002_CR7 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106107 – ident: 3002_CR28 – ident: 3002_CR18 doi: 10.1109/CVPR.2016.438 – volume: 47 start-page: 7 issue: 1 year: 2002 ident: 3002_CR1 publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1014573219977 – ident: 3002_CR25 doi: 10.1609/aaai.v36i2.20056 – ident: 3002_CR19 doi: 10.1109/CVPR.2018.00567 – ident: 3002_CR5 doi: 10.1109/IVS.2013.6629487 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 3002_CR32 publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/3072959.3073592 – volume: 6 start-page: 679 year: 1986 ident: 3002_CR49 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – ident: 3002_CR20 doi: 10.1109/ICCVW.2017.108 – volume: 211 year: 2023 ident: 3002_CR6 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118573 – volume: 30 start-page: 328 issue: 2 year: 2007 ident: 3002_CR14 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1166 – ident: 3002_CR2 doi: 10.1109/CVPR.2012.6248074 – ident: 3002_CR50 – volume: 274 year: 2023 ident: 3002_CR8 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115158 – volume: 25 start-page: 787 issue: 7 year: 2003 ident: 3002_CR10 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1206509 – ident: 3002_CR46 doi: 10.1007/978-3-030-20873-8_2 – ident: 3002_CR17 doi: 10.1109/CVPR.2015.7298767 – ident: 3002_CR22 doi: 10.1109/ICCV.2017.17 – ident: 3002_CR35 doi: 10.1007/978-3-030-01267-0_35 – ident: 3002_CR52 doi: 10.1109/ICRA40945.2020.9197031 – ident: 3002_CR47 doi: 10.1609/aaai.v34i07.6991 – ident: 3002_CR15 doi: 10.1109/CVPRW.2010.5543769 – ident: 3002_CR48 doi: 10.1109/ICASSP.2018.8461664 – ident: 3002_CR9 doi: 10.1109/ICCV.2001.937668 – ident: 3002_CR43 doi: 10.1109/CVPR.2016.90 |
| SSID | ssj0017749 |
| Score | 2.3795638 |
| Snippet | Deep learning-based stereo matching has made significant progress, but it still faces challenges: The disparity prediction error maps of current models show... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2975 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Computer Graphics Computer Science Deep learning Design Embedding Frames per second Image Processing and Computer Vision Matching Neural networks Original Article Real time |
| SummonAdditionalLinks | – databaseName: Springer Online Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRKMgDG1hK7aR2mHiIiqlCFFC3KPFDQqpa1BT69zm7SQqIIsFsJ7HOj--7nO8-gNPIiihjAacGwY2GYeDiu2lGpdS8I5lGL8N6sQnR68nBIL4vksLy8rZ7GZL0J3WV7Oary1HEGIoLE_fxbBXWEO6kE2x46D9XsQMkNJ70ttE_cnmeRarMz-_4CkcLjvktLOrRplv_3zi3Yatgl-Rqvhx2YMWMGlAvlRtIsZEbsPmpDOEuXN5e97HZjC-I-7tGHbJpMsTxEgd7buoIcluC_HJInRg9yX13gmzXX8Xcg6fu7ePNHS2UFajioZhSqVmskVZHNkx1qJEiGCtUJ7NCB0FqQm4Yt22V8YwZ9CAzV5NHI7kQCHcazwC-D7XReGQOgKTCslhFPIuRWmlmUoMHprUKsVGZKI2a0C4NnKii7LhTvxgmVcFkb7AEDZZ4gyWzJpxVz7zOi2782rtVzltSbMA8QWTm6NzGUby0WTrRERzfeTmNi-blHzv8W_cj2GDIguZXfVpQm07ezDGsq_fpSz458ev2A3JO5Us priority: 102 providerName: Springer Nature |
| Title | EBStereo: edge-based loss function for real-time stereo matching |
| URI | https://link.springer.com/article/10.1007/s00371-023-03002-w https://www.proquest.com/docview/3033721959 https://www.proquest.com/docview/3033880815 |
| Volume | 40 |
| WOSCitedRecordID | wos001028383100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-2315 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: P5Z dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-2315 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: K7- dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-2315 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH4R8KAHfxtRJD1408bRbmzzomIgJiaEgBriZdn6IzEhgAzl3_e1bKAmcPGyS7e06eve972-9n0AF572vYQ5nCoEN-q6jsnvxgkNAsnrAZMYZWgrNuG320G_H3ayDbc0O1aZ-0TrqOVImD3ya3S1HKOV0Atvxx_UqEaZ7GomoVGAkqmSYKQbOt7bIouA1MbS3xpGSubGZ3Zpxl6ds7XqKCIWxWWOXmH2G5iWbPNPgtTiTmv3vyPeg52McZL7-RLZhw01PIDtH3UID-Gu2ejh_KrRDTHba9RAmyQDHCYxuGdsR5DcEiSYA2rU6ElqXydId-1ZzCN4aTWfHx5pJq1ABXf9KQ0kCyXyak-7sXQlcgSlfVFPtC8dJ1YuV4zrmkh4whSGkIkpyiORXfiIdxKdAD-G4nA0VCdAYl-zUHg8CZFbSaZihR5Ta4HgKJQXe2Wo5fMaiazuuJG_GESLisnWFhHaIrK2iGZluFx8M55X3Vj7diU3QJT9gWm0nP2VzYFRHcHxXeUWXjav7ux0fWdnsMWQ9szP9lSgOJ18qnPYFF_T93RShVKj2e50q1B48mnVLlZ8dnuv3-X47A4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xScCBHVFWH-AEFq2d1AkSYi0CFSokQOIWEi9SpdKWtlDxU3wjYzdpAYneOHC2Eyee8bw3tmcGYNs3wk9YnlON4EY9L2_Pd-OEBoHixYAp9DKMKzYhKpXg8TG8HYGPLBbGXqvMbKIz1Koh7R75Pppajt5K6IdHzRdqq0bZ09WshEZPLcr6vYsuW_vw6hzlu8PYRen-7JKmVQWo5J7o0ECxUCGl9I0XK08hPGojZDExQuXzsfa4ZtwUZMITptF7Smw-GoXAKtDUK9R_ju8dhXGPB8Kuq7Kg_VMLpFKObhfQM7MRpmmQjgvVc7nxKCIkxWWFVqj7HQgH7PbHgazDuYvZ_zZDczCTMmpy0lsC8zCi6wsw_SXP4iIcl07vUH9044DY7UNqoVuRGk4LsbhudZMgeSdIoGu0U33WpO26E6Tz7q7pEjz8yS8sw1i9UdcrQGJhWCh9noTIHRXTsUZEMEYi-Evtx34OCpkcI5nmVbflPWpRPyO0k32Eso-c7KNuDnb7zzR7WUWG9l7PBB6lFqYdDaT9a3Ngq6rg9-1lGjVo_n2w1eGDbcHk5f3NdXR9VSmvwRRDite7x7QOY53Wq96ACfnWqbZbm25pEHj6a037BIDqRCA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxOjUPvmmwa9q19cnbhqKMwVT2FtomAWFsY6vu73uSXjbFCeJz0jack-T7Ts8N4NRVnhvZFqMSwY06jqX9u2FEfV-whm8LtDKUaTbhtdt-rxd05rL4TbR77pJMcxp0laZBcjES6qJIfDOV5ijiDcVNimd6ugwrjg6k1_Z697XwIyC5MQS4jraSzvnM0mZ-fsdXaJrxzW8uUoM8rfL_17wFmxnrJNfpNtmGJTmoQDnv6ECyA16BjbnyhDtw1bzp4rAcXhL9141qxBOkj2snGg61SglyXoK8s091k3oyMdMJsmATorkLL63m8-09zTou0Jg5XkJ9YQcC6barnFA4AqmDVF7ciJQnLCuUDpM2U_U4YpEt0bKMdK0egaTDQxgUeDewPSgNhgO5DyT0lB3ELosCpFzClqHEi1SpGDEzlm7oVqGeC5vHWTly3RWjz4tCykZgHAXGjcD4tApnxTOjtBjHr7NruQ55djAnHBGbodEbuMHCYV83I8H1necqnQ0v_tjB36afwFrnrsWfHtqPh7BuI1FKo4FqUErG7_IIVuOP5G0yPjbb-RObsPET |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EBStereo%3A+edge-based+loss+function+for+real-time+stereo+matching&rft.jtitle=The+Visual+computer&rft.au=Bi%2C+Weijie&rft.au=Chen%2C+Ming&rft.au=Wu%2C+Dongliu&rft.au=Lu%2C+Shenglian&rft.date=2024-04-01&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=4&rft.spage=2975&rft.epage=2986&rft_id=info:doi/10.1007%2Fs00371-023-03002-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00371_023_03002_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |