A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in Irregular Geometries
We present a fully conservative, high-resolution, finite volume algorithm for advection-diffusion equations in irregular geometries. The algorithm uses a Cartesian grid in which some cells are cut by the embedded boundary. A novel feature is the use of a “capacity function” to model the fact that so...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 157; číslo 1; s. 143 - 180 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
01.01.2000
|
| Témata: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a fully conservative, high-resolution, finite volume algorithm for advection-diffusion equations in irregular geometries. The algorithm uses a Cartesian grid in which some cells are cut by the embedded boundary. A novel feature is the use of a “capacity function” to model the fact that some cells are only partially available to the fluid. The advection portion then uses the explicit wave-propagation methods implemented in CLAWPACK, and is stable for Courant numbers up to 1. Diffusion is modelled with an implicit finite-volume algorithm. Results are shown for several geometries. Convergence is verified and the 1-norm order of accuracy is found to between 1.2 and 2 depending on the geometry and Peclet number. Software is available on the web. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 USDOE FG03-96ER25292 National Science Foundation (NSF) |
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1006/jcph.1999.6369 |