Fast computing of some generalized linear mixed pseudo-models with temporal autocorrelation

This paper considers ways to increase computational speed in generalized linear mixed pseudo-models for the case of many repeated measurements on subjects. We obtain linearly increasing computing time with number of observations, as opposed to O( n 3 ) increasing computing time using numerical optim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational statistics Ročník 25; číslo 1; s. 39 - 55
Hlavní autoři: Ver Hoef, Jay M., London, Josh M., Boveng, Peter L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.03.2010
Springer Nature B.V
Témata:
ISSN:0943-4062, 1613-9658
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper considers ways to increase computational speed in generalized linear mixed pseudo-models for the case of many repeated measurements on subjects. We obtain linearly increasing computing time with number of observations, as opposed to O( n 3 ) increasing computing time using numerical optimization. We also find a surprising result; that incomplete optimization for covariance parameters within the larger parameter estimation algorithm actually decreases time to convergence. After comparing various computing algorithms and choosing the best one, we fit a generalized linear mixed model to a binary time series data set with over 100 fixed effects, 50 random effects, and approximately 1.5 ×  10 5 observations.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-009-0160-1