Fast computing of some generalized linear mixed pseudo-models with temporal autocorrelation
This paper considers ways to increase computational speed in generalized linear mixed pseudo-models for the case of many repeated measurements on subjects. We obtain linearly increasing computing time with number of observations, as opposed to O( n 3 ) increasing computing time using numerical optim...
Gespeichert in:
| Veröffentlicht in: | Computational statistics Jg. 25; H. 1; S. 39 - 55 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer-Verlag
01.03.2010
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0943-4062, 1613-9658 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper considers ways to increase computational speed in generalized linear mixed pseudo-models for the case of many repeated measurements on subjects. We obtain linearly increasing computing time with number of observations, as opposed to O(
n
3
) increasing computing time using numerical optimization. We also find a surprising result; that incomplete optimization for covariance parameters within the larger parameter estimation algorithm actually decreases time to convergence. After comparing various computing algorithms and choosing the best one, we fit a generalized linear mixed model to a binary time series data set with over 100 fixed effects, 50 random effects, and approximately 1.5 × 10
5
observations. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0943-4062 1613-9658 |
| DOI: | 10.1007/s00180-009-0160-1 |