Quantum analogue of Trapezoid-type inequalities for q-differentiable coordinated strongly convex functions
In this paper, with the help of quantum integrals and derivatives, we derive some q-Trapezoid-type inequalities for quantum differentiable coordinated strongly convex functions on bidimensional intervals and obtain new bounds using the q-Ho¨lder and power mean inequalities. We show that the results...
Uloženo v:
| Vydáno v: | Journal of applied mathematics & computing Ročník 71; číslo 2; s. 2473 - 2504 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Nature B.V
01.04.2025
|
| Témata: | |
| ISSN: | 1598-5865, 1865-2085 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, with the help of quantum integrals and derivatives, we derive some q-Trapezoid-type inequalities for quantum differentiable coordinated strongly convex functions on bidimensional intervals and obtain new bounds using the q-Ho¨lder and power mean inequalities. We show that the results established in this paper generalize earlier findings. Additionally, we demonstrate our findings with the help of some examples. These developments not only reinforce the core tenets of convex analysis but also expand the applicability of Hermite-Hadamard-type inequalities to generalized convex functions on coordinates and provide valuable tools for data analysis and optimization problem-solving. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1598-5865 1865-2085 |
| DOI: | 10.1007/s12190-024-02281-3 |