Quantum analogue of Trapezoid-type inequalities for q-differentiable coordinated strongly convex functions

In this paper, with the help of quantum integrals and derivatives, we derive some q-Trapezoid-type inequalities for quantum differentiable coordinated strongly convex functions on bidimensional intervals and obtain new bounds using the q-Ho¨lder and power mean inequalities. We show that the results...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied mathematics & computing Ročník 71; číslo 2; s. 2473 - 2504
Hlavní autoři: Mishra, Shashi Kant, Sharma, Ravina, Bisht, Jaya
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Nature B.V 01.04.2025
Témata:
ISSN:1598-5865, 1865-2085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, with the help of quantum integrals and derivatives, we derive some q-Trapezoid-type inequalities for quantum differentiable coordinated strongly convex functions on bidimensional intervals and obtain new bounds using the q-Ho¨lder and power mean inequalities. We show that the results established in this paper generalize earlier findings. Additionally, we demonstrate our findings with the help of some examples. These developments not only reinforce the core tenets of convex analysis but also expand the applicability of Hermite-Hadamard-type inequalities to generalized convex functions on coordinates and provide valuable tools for data analysis and optimization problem-solving.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-024-02281-3