Quantum analogue of Trapezoid-type inequalities for q-differentiable coordinated strongly convex functions
In this paper, with the help of quantum integrals and derivatives, we derive some q-Trapezoid-type inequalities for quantum differentiable coordinated strongly convex functions on bidimensional intervals and obtain new bounds using the q-Ho¨lder and power mean inequalities. We show that the results...
Gespeichert in:
| Veröffentlicht in: | Journal of applied mathematics & computing Jg. 71; H. 2; S. 2473 - 2504 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Nature B.V
01.04.2025
|
| Schlagworte: | |
| ISSN: | 1598-5865, 1865-2085 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, with the help of quantum integrals and derivatives, we derive some q-Trapezoid-type inequalities for quantum differentiable coordinated strongly convex functions on bidimensional intervals and obtain new bounds using the q-Ho¨lder and power mean inequalities. We show that the results established in this paper generalize earlier findings. Additionally, we demonstrate our findings with the help of some examples. These developments not only reinforce the core tenets of convex analysis but also expand the applicability of Hermite-Hadamard-type inequalities to generalized convex functions on coordinates and provide valuable tools for data analysis and optimization problem-solving. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1598-5865 1865-2085 |
| DOI: | 10.1007/s12190-024-02281-3 |