Multi-innovation Extended Stochastic Gradient Algorithm and Its Performance Analysis

This paper derives the multi-innovation extended stochastic gradient algorithm for controlled autoregressive moving average models by expanding the scalar innovation to an innovation vector and analyzes its performance in detail. Four convergence theorems are given for the multi-innovation extended...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Circuits, systems, and signal processing Ročník 29; číslo 4; s. 649 - 667
Hlavní autoři: Liu, Yanjun, Yu, Li, Ding, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston SP Birkhäuser Verlag Boston 01.08.2010
Springer Nature B.V
Témata:
ISSN:0278-081X, 1531-5878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper derives the multi-innovation extended stochastic gradient algorithm for controlled autoregressive moving average models by expanding the scalar innovation to an innovation vector and analyzes its performance in detail. Four convergence theorems are given for the multi-innovation extended stochastic gradient algorithm to show that the parameter estimates converge to their true values under the weak persistent excitation condition. The simulation results show that the proposed algorithm can produce more accurate parameter estimates than the traditional extended stochastic gradient algorithm.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-010-9174-8