Convolutional Sparse Coding for Compressed Sensing CT Reconstruction

Over the past few years, dictionary learning (DL)-based methods have been successfully used in various image reconstruction problems. However, the traditional DL-based computed tomography (CT) reconstruction methods are patch-based and ignore the consistency of pixels in overlapped patches. In addit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on medical imaging Ročník 38; číslo 11; s. 2607 - 2619
Hlavní autori: Bao, Peng, Sun, Huaiqiang, Wang, Zhangyang, Zhang, Yi, Xia, Wenjun, Yang, Kang, Chen, Weiyan, Chen, Mianyi, Xi, Yan, Niu, Shanzhou, Zhou, Jiliu, Zhang, He
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Over the past few years, dictionary learning (DL)-based methods have been successfully used in various image reconstruction problems. However, the traditional DL-based computed tomography (CT) reconstruction methods are patch-based and ignore the consistency of pixels in overlapped patches. In addition, the features learned by these methods always contain shifted versions of the same features. In recent years, convolutional sparse coding (CSC) has been developed to address these problems. In this paper, inspired by several successful applications of CSC in the field of signal processing, we explore the potential of CSC in sparse-view CT reconstruction. By directly working on the whole image, without the necessity of dividing the image into overlapped patches in DL-based methods, the proposed methods can maintain more details and avoid artifacts caused by patch aggregation. With predetermined filters, an alternating scheme is developed to optimize the objective function. Extensive experiments with simulated and real CT data were performed to validate the effectiveness of the proposed methods. The qualitative and quantitative results demonstrate that the proposed methods achieve better performance than the several existing state-of-the-art methods.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2019.2906853