Measuring the capabilities of quantum computers

Quantum computers can now run interesting programs, but each processor’s capability—the set of programs that it can run successfully—is limited by hardware errors. These errors can be complicated, making it difficult to accurately predict a processor’s capability. Benchmarks can be used to measure c...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics Vol. 18; no. 1; pp. 75 - 79
Main Authors: Proctor, Timothy, Rudinger, Kenneth, Young, Kevin, Nielsen, Erik, Blume-Kohout, Robin
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.01.2022
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects:
ISSN:1745-2473, 1745-2481
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Quantum computers can now run interesting programs, but each processor’s capability—the set of programs that it can run successfully—is limited by hardware errors. These errors can be complicated, making it difficult to accurately predict a processor’s capability. Benchmarks can be used to measure capability directly, but current benchmarks have limited flexibility and scale poorly to many-qubit processors. We show how to construct scalable, efficiently verifiable benchmarks based on any program by using a technique that we call circuit mirroring. With it, we construct two flexible, scalable volumetric benchmarks based on randomized and periodically ordered programs. We use these benchmarks to map out the capabilities of twelve publicly available processors, and to measure the impact of program structure on each one. We find that standard error metrics are poor predictors of whether a program will run successfully on today’s hardware, and that current processors vary widely in their sensitivity to program structure. Evaluations of quantum computers across architectures need reliable benchmarks. A class of benchmarks that can directly reflect the structure of any algorithm shows that different quantum computers have considerable variations in performance.
AbstractList Quantum computers can now run interesting programs, but each processor’s capability—the set of programs that it can run successfully—is limited by hardware errors. These errors can be complicated, making it difficult to accurately predict a processor’s capability. Benchmarks can be used to measure capability directly, but current benchmarks have limited flexibility and scale poorly to many-qubit processors. We show how to construct scalable, efficiently verifiable benchmarks based on any program by using a technique that we call circuit mirroring. With it, we construct two flexible, scalable volumetric benchmarks based on randomized and periodically ordered programs. We use these benchmarks to map out the capabilities of twelve publicly available processors, and to measure the impact of program structure on each one. We find that standard error metrics are poor predictors of whether a program will run successfully on today’s hardware, and that current processors vary widely in their sensitivity to program structure. Evaluations of quantum computers across architectures need reliable benchmarks. A class of benchmarks that can directly reflect the structure of any algorithm shows that different quantum computers have considerable variations in performance.
Quantum computers can now run interesting programs, but each processor’s capability—the set of programs that it can run successfully—is limited by hardware errors. These errors can be complicated, making it difficult to accurately predict a processor’s capability. Benchmarks can be used to measure capability directly, but current benchmarks have limited flexibility and scale poorly to many-qubit processors. We show how to construct scalable, efficiently verifiable benchmarks based on any program by using a technique that we call circuit mirroring. With it, we construct two flexible, scalable volumetric benchmarks based on randomized and periodically ordered programs. We use these benchmarks to map out the capabilities of twelve publicly available processors, and to measure the impact of program structure on each one. We find that standard error metrics are poor predictors of whether a program will run successfully on today’s hardware, and that current processors vary widely in their sensitivity to program structure.
Quantum computers can now run interesting programs, but each processor’s capability—the set of programs that it can run successfully—is limited by hardware errors. These errors can be complicated, making it difficult to accurately predict a processor’s capability. Benchmarks can be used to measure capability directly, but current benchmarks have limited flexibility and scale poorly to many-qubit processors. We show how to construct scalable, efficiently verifiable benchmarks based on any program by using a technique that we call circuit mirroring. With it, we construct two flexible, scalable volumetric benchmarks based on randomized and periodically ordered programs. We use these benchmarks to map out the capabilities of twelve publicly available processors, and to measure the impact of program structure on each one. We find that standard error metrics are poor predictors of whether a program will run successfully on today’s hardware, and that current processors vary widely in their sensitivity to program structure.Evaluations of quantum computers across architectures need reliable benchmarks. A class of benchmarks that can directly reflect the structure of any algorithm shows that different quantum computers have considerable variations in performance.
Author Rudinger, Kenneth
Blume-Kohout, Robin
Proctor, Timothy
Young, Kevin
Nielsen, Erik
Author_xml – sequence: 1
  givenname: Timothy
  orcidid: 0000-0003-0219-8930
  surname: Proctor
  fullname: Proctor, Timothy
  email: tjproct@sandia.gov
  organization: Quantum Performance Laboratory, Sandia National Laboratories, Quantum Performance Laboratory, Sandia National Laboratories
– sequence: 2
  givenname: Kenneth
  orcidid: 0000-0002-3038-4389
  surname: Rudinger
  fullname: Rudinger, Kenneth
  organization: Quantum Performance Laboratory, Sandia National Laboratories, Quantum Performance Laboratory, Sandia National Laboratories
– sequence: 3
  givenname: Kevin
  orcidid: 0000-0002-4679-4542
  surname: Young
  fullname: Young, Kevin
  organization: Quantum Performance Laboratory, Sandia National Laboratories, Quantum Performance Laboratory, Sandia National Laboratories
– sequence: 4
  givenname: Erik
  surname: Nielsen
  fullname: Nielsen, Erik
  organization: Quantum Performance Laboratory, Sandia National Laboratories, Quantum Performance Laboratory, Sandia National Laboratories
– sequence: 5
  givenname: Robin
  orcidid: 0000-0001-8134-948X
  surname: Blume-Kohout
  fullname: Blume-Kohout, Robin
  organization: Quantum Performance Laboratory, Sandia National Laboratories, Quantum Performance Laboratory, Sandia National Laboratories
BackLink https://www.osti.gov/servlets/purl/1841976$$D View this record in Osti.gov
BookMark eNp9kD1PwzAURS1UJNrCH2CKYA71cxw7HlHFl1TEArPlOA511dqp7Qz8exKCQGJgem-45-rqLNDMeWcQugR8A7ioVpFCyXiOCeQYKBY5P0Fz4LTMCa1g9vPz4gwtYtxhTAmDYo5Wz0bFPlj3nqWtybTqVG33NlkTM99mx1651B8y7Q9dn0yI5-i0VftoLr7vEr3d372uH_PNy8PT-naT64KylBvcUs5wDZVQggGrhWbcFCUva9wQTqARrSaGiJqq1rTclE3dVKpiijPOC1Ys0dXU62OyMmqbjN5q75zRSUJFQfAxdD2FuuCPvYlJ7nwf3LBLEkYAsADgQ6qaUjr4GINp5dCmkvUuBWX3ErAcHcrJoRwcyi-HckTJH7QL9qDCx_9QMUGxG72a8LvqH-oTcdWEkA
CitedBy_id crossref_primary_10_1109_TQE_2023_3305232
crossref_primary_10_22331_q_2025_09_05_1848
crossref_primary_10_1103_PhysRevA_107_032614
crossref_primary_10_1021_acs_chemrev_4c00870
crossref_primary_10_1038_s41534_022_00636_x
crossref_primary_10_1103_PhysRevResearch_6_043127
crossref_primary_10_1103_PhysRevX_13_041030
crossref_primary_10_3390_en18164283
crossref_primary_10_7498_aps_74_20250791
crossref_primary_10_1103_PRXQuantum_4_040311
crossref_primary_10_1016_j_jcp_2024_112756
crossref_primary_10_1103_PRXQuantum_4_020304
crossref_primary_10_1038_s41534_023_00797_3
crossref_primary_10_1088_1402_4896_acb2ff
crossref_primary_10_1103_PRXQuantum_6_030202
crossref_primary_10_1103_PhysRevResearch_4_043150
crossref_primary_10_1007_s42484_023_00121_4
crossref_primary_10_1088_2058_9565_adc298
crossref_primary_10_1109_TQE_2025_3558090
crossref_primary_10_1007_s13218_024_00864_7
crossref_primary_10_1016_j_cities_2023_104459
crossref_primary_10_1088_2058_9565_ad3d80
crossref_primary_10_1103_PhysRevApplied_22_054074
crossref_primary_10_1140_epjqt_s40507_021_00107_w
crossref_primary_10_1109_TQE_2024_3430215
crossref_primary_10_1007_s11128_024_04384_z
crossref_primary_10_1103_PhysRevResearch_7_023032
crossref_primary_10_1088_1361_6633_ad85f0
crossref_primary_10_1109_JOE_2025_3538941
crossref_primary_10_1016_j_asoc_2022_109844
crossref_primary_10_1038_s41534_023_00764_y
crossref_primary_10_1007_s10773_024_05811_8
crossref_primary_10_3390_electronics12224664
crossref_primary_10_1088_1402_4896_ad406c
crossref_primary_10_1103_PhysRevX_15_021047
crossref_primary_10_1103_PRXQuantum_5_030334
crossref_primary_10_1007_s11433_022_2057_y
crossref_primary_10_1103_PRXQuantum_4_010327
crossref_primary_10_1103_PhysRevX_13_041052
crossref_primary_10_1038_s41598_024_75212_8
crossref_primary_10_1007_s11128_023_04154_3
crossref_primary_10_1103_PhysRevA_106_052406
crossref_primary_10_1109_TQE_2024_3404502
crossref_primary_10_1109_TQE_2022_3184764
crossref_primary_10_1109_TMTT_2023_3344878
crossref_primary_10_1002_qute_202500022
crossref_primary_10_3390_e24101467
crossref_primary_10_1088_1751_8121_adffcd
crossref_primary_10_1109_TQE_2023_3253761
crossref_primary_10_1103_PhysRevApplied_22_064084
crossref_primary_10_1007_s42484_022_00072_2
crossref_primary_10_1039_D4MH00916A
crossref_primary_10_1038_s41567_023_02282_2
crossref_primary_10_1103_PhysRevX_15_021052
crossref_primary_10_1103_PhysRevApplied_20_024034
crossref_primary_10_1088_2058_9565_aded2f
crossref_primary_10_1145_3682071
crossref_primary_10_1038_s41586_024_07173_x
crossref_primary_10_1038_s41467_025_60923_x
crossref_primary_10_1016_j_techfore_2023_122642
crossref_primary_10_1103_PhysRevResearch_4_033140
crossref_primary_10_1007_s11128_022_03433_9
crossref_primary_10_1103_PRXQuantum_3_020335
crossref_primary_10_1103_h7pq_s159
crossref_primary_10_1103_PhysRevResearch_4_033028
Cites_doi 10.1103/PhysRevLett.122.200502
10.1103/PhysRevA.100.032328
10.1088/1367-2630/ab4fd6
10.1038/nature03350
10.1103/PhysRevLett.106.180504
10.1088/2058-9565/ab8aa4
10.1038/s41534-017-0052-0
10.1038/s41534-019-0209-0
10.1088/1367-2630/ab1800
10.1038/s41467-019-13534-2
10.1103/PhysRevLett.120.050505
10.1088/1464-4266/7/10/021
10.1103/PhysRevA.95.042306
10.1038/s41567-018-0124-x
10.1038/s41586-019-1666-5
10.1103/PhysRev.108.590
10.1016/j.cpc.2017.06.011
10.1103/PhysRevA.99.022313
10.22331/q-2018-08-06-79
10.1073/pnas.1618020114
10.1103/PhysRevLett.109.240504
10.1038/nature23458
10.22331/q-2020-09-11-321
10.1103/PhysRevA.99.032318
10.1038/s41467-020-19074-4
10.1038/s41567-020-0992-8
10.1103/PhysRevLett.123.030503
10.1103/PhysRevLett.117.170502
10.1038/ncomms14485
10.1038/s41467-019-13068-7
10.22331/q-2020-11-15-362
10.1103/PhysRevA.94.052325
10.1103/PhysRevLett.124.130501
10.1103/PhysRevA.96.022330
10.1145/3307650.3322273
10.5281/zenodo.5546759
10.5281/zenodo.5197499
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
CorporateAuthor Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – sequence: 0
  name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OIOZB
OTOTI
DOI 10.1038/s41567-021-01409-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 79
ExternalDocumentID 1841976
10_1038_s41567_021_01409_7
GrantInformation_xml – fundername: DOE | LDRD | Sandia National Laboratories (Sandia)
  funderid: https://doi.org/10.13039/100006234
– fundername: DOE | Office of Science (SC)
  funderid: https://doi.org/10.13039/100006132
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
7U5
7XB
8FD
8FK
L7M
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
AGEZK
OIOZB
OTOTI
ID FETCH-LOGICAL-c346t-e0f4760b189a9616b9c67e3575b0d2721d9fc2e29b4afef7e5dbd8a86a7677363
IEDL.DBID M2P
ISICitedReferencesCount 93
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733431000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-2473
IngestDate Thu Dec 05 06:26:32 EST 2024
Sat Aug 16 17:21:17 EDT 2025
Sat Nov 29 01:38:10 EST 2025
Tue Nov 18 22:15:46 EST 2025
Fri Feb 21 02:38:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-e0f4760b189a9616b9c67e3575b0d2721d9fc2e29b4afef7e5dbd8a86a7677363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
NA0003525
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
SAND-2021-12259J
ORCID 0000-0001-8134-948X
0000-0002-4679-4542
0000-0002-3038-4389
0000-0003-0219-8930
000000018134948X
0000000246794542
0000000230384389
0000000302198930
OpenAccessLink https://www.osti.gov/servlets/purl/1841976
PQID 2621109117
PQPubID 27545
PageCount 5
ParticipantIDs osti_scitechconnect_1841976
proquest_journals_2621109117
crossref_citationtrail_10_1038_s41567_021_01409_7
crossref_primary_10_1038_s41567_021_01409_7
springer_journals_10_1038_s41567_021_01409_7
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – sequence: 0
  name: Nature Publishing Group (NPG)
– name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kueng, Long, Doherty, Flammia (CR5) 2016; 117
McCaskey (CR24) 2019; 5
Mavadia (CR7) 2018; 4
Campbell (CR36) 2017; 95
Cross, Bishop, Sheldon, Nation, Gambetta (CR18) 2019; 100
Blume-Kohout (CR12) 2017; 8
Wright (CR22) 2019; 10
Blume-Kohout, Young (CR33) 2020; 4
Michielsen (CR14) 2017; 220
Tuckett, Bartlett, Flammia, Brown (CR27) 2020; 124
Emerson, Alicki, Życzkowski (CR29) 2005; 7
CR32
CR31
Knill (CR37) 2005; 434
Linke (CR20) 2017; 114
Ferracin, Kapourniotis, Datta (CR25) 2019; 21
Preskill (CR2) 2018; 2
Gambetta (CR13) 2012; 109
McKay, Sheldon, Smolin, Chow, Gambetta (CR16) 2019; 122
Carignan-Dugas, Wallman, Emerson (CR38) 2019; 21
Arute (CR1) 2019; 574
Proctor (CR8) 2020; 11
Murphy, Brown (CR6) 2019; 99
Wallman, Emerson (CR35) 2016; 94
Boixo (CR17) 2018; 14
Magesan, Gambetta, Emerson (CR19) 2011; 106
Erhard (CR9) 2019; 10
Sarovar (CR3) 2020; 4
Tuckett, Bartlett, Flammia (CR26) 2018; 120
McKay, Wood, Sheldon, Chow, Gambetta (CR30) 2017; 96
CR23
Proctor (CR15) 2019; 123
Huang, Doherty, Flammia (CR4) 2019; 99
CR41
CR40
Harrow, Montanaro (CR21) 2017; 549
Nielsen (CR39) 2020; 5
Flammia, Wallman (CR10) 2020; 1
Loschmidt (CR28) 1876; 2
Harper, Flammia, Wallman (CR11) 2020; 16
Kohn, Luttinger (CR34) 1957; 108
R Blume-Kohout (1409_CR12) 2017; 8
R Harper (1409_CR11) 2020; 16
1409_CR23
DC Murphy (1409_CR6) 2019; 99
K Wright (1409_CR22) 2019; 10
A Erhard (1409_CR9) 2019; 10
S Boixo (1409_CR17) 2018; 14
M Sarovar (1409_CR3) 2020; 4
J Preskill (1409_CR2) 2018; 2
J Emerson (1409_CR29) 2005; 7
AW Harrow (1409_CR21) 2017; 549
AJ McCaskey (1409_CR24) 2019; 5
S Ferracin (1409_CR25) 2019; 21
A Carignan-Dugas (1409_CR38) 2019; 21
NM Linke (1409_CR20) 2017; 114
JM Gambetta (1409_CR13) 2012; 109
R Blume-Kohout (1409_CR33) 2020; 4
R Kueng (1409_CR5) 2016; 117
ST Flammia (1409_CR10) 2020; 1
TJ Proctor (1409_CR15) 2019; 123
DC McKay (1409_CR30) 2017; 96
1409_CR31
1409_CR32
E Campbell (1409_CR36) 2017; 95
W Kohn (1409_CR34) 1957; 108
DK Tuckett (1409_CR27) 2020; 124
E Nielsen (1409_CR39) 2020; 5
DC McKay (1409_CR16) 2019; 122
E Magesan (1409_CR19) 2011; 106
E Huang (1409_CR4) 2019; 99
K Michielsen (1409_CR14) 2017; 220
DK Tuckett (1409_CR26) 2018; 120
J Loschmidt (1409_CR28) 1876; 2
T Proctor (1409_CR8) 2020; 11
S Mavadia (1409_CR7) 2018; 4
AW Cross (1409_CR18) 2019; 100
JJ Wallman (1409_CR35) 2016; 94
E Knill (1409_CR37) 2005; 434
1409_CR40
F Arute (1409_CR1) 2019; 574
1409_CR41
References_xml – volume: 122
  start-page: 200502
  year: 2019
  ident: CR16
  article-title: Three-qubit randomized benchmarking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.200502
– volume: 100
  start-page: 032328
  year: 2019
  ident: CR18
  article-title: Validating quantum computers using randomized model circuits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.032328
– volume: 21
  start-page: 113038
  year: 2019
  ident: CR25
  article-title: Accrediting outputs of noisy intermediate-scale quantum computing devices
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab4fd6
– volume: 434
  start-page: 39
  year: 2005
  end-page: 44
  ident: CR37
  article-title: Quantum computing with realistically noisy devices
  publication-title: Nature
  doi: 10.1038/nature03350
– volume: 106
  start-page: 180504
  year: 2011
  ident: CR19
  article-title: Scalable and robust randomized benchmarking of quantum processes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.180504
– volume: 5
  start-page: 044002
  year: 2020
  ident: CR39
  article-title: Probing quantum processor performance with pyGSTi
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab8aa4
– volume: 4
  year: 2018
  ident: CR7
  article-title: Experimental quantum verification in the presence of temporally correlated noise
  publication-title: NPJ Quantum Inf.
  doi: 10.1038/s41534-017-0052-0
– volume: 5
  start-page: 99
  year: 2019
  ident: CR24
  article-title: Quantum chemistry as a benchmark for near-term quantum computers
  publication-title: NPJ Quantum Inf.
  doi: 10.1038/s41534-019-0209-0
– volume: 21
  start-page: 053016
  year: 2019
  ident: CR38
  article-title: Bounding the average gate fidelity of composite channels using the unitarity
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab1800
– volume: 10
  start-page: 5464
  year: 2019
  ident: CR22
  article-title: Benchmarking an 11-qubit quantum computer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13534-2
– volume: 120
  start-page: 050505
  year: 2018
  ident: CR26
  article-title: Ultrahigh error threshold for surface codes with biased noise
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.050505
– volume: 2
  start-page: 128
  year: 1876
  end-page: 142
  ident: CR28
  article-title: Über den Zustand des Wärmegleichgewichts eines Systems von Körpern mit Rücksicht auf die Schwerkraft
  publication-title: Sitzungsber. Akad. Wiss.
– volume: 7
  start-page: S347
  year: 2005
  ident: CR29
  article-title: Scalable noise estimation with random unitary operators
  publication-title: J. Opt. B
  doi: 10.1088/1464-4266/7/10/021
– volume: 95
  start-page: 042306
  year: 2017
  ident: CR36
  article-title: Shorter gate sequences for quantum computing by mixing unitaries
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.042306
– volume: 14
  start-page: 595
  year: 2018
  end-page: 600
  ident: CR17
  article-title: Characterizing quantum supremacy in near-term devices
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0124-x
– ident: CR40
– volume: 574
  start-page: 505
  year: 2019
  end-page: 510
  ident: CR1
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 108
  start-page: 590
  year: 1957
  ident: CR34
  article-title: Quantum theory of electrical transport phenomena
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.590
– ident: CR23
– volume: 220
  start-page: 44
  year: 2017
  end-page: 55
  ident: CR14
  article-title: Benchmarking gate-based quantum computers
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.06.011
– volume: 99
  start-page: 022313
  year: 2019
  ident: CR4
  article-title: Performance of quantum error correction with coherent errors
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.022313
– volume: 2
  start-page: 79
  year: 2018
  ident: CR2
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 114
  start-page: 3305
  year: 2017
  end-page: 3310
  ident: CR20
  article-title: Experimental comparison of two quantum computing architectures
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1618020114
– volume: 1
  start-page: 3
  year: 2020
  ident: CR10
  article-title: Efficient estimation of Pauli channels
  publication-title: ACM Trans. Quant. Comp.
– volume: 109
  start-page: 240504
  year: 2012
  ident: CR13
  article-title: Characterization of addressability by simultaneous randomized benchmarking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.240504
– volume: 549
  start-page: 203
  year: 2017
  end-page: 209
  ident: CR21
  article-title: Quantum computational supremacy
  publication-title: Nature
  doi: 10.1038/nature23458
– volume: 4
  start-page: 321
  year: 2020
  ident: CR3
  article-title: Detecting crosstalk errors in quantum information processors
  publication-title: Quantum
  doi: 10.22331/q-2020-09-11-321
– ident: CR31
– volume: 99
  start-page: 032318
  year: 2019
  ident: CR6
  article-title: Controlling error orientation to improve quantum algorithm success rates
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.032318
– volume: 11
  year: 2020
  ident: CR8
  article-title: Detecting and tracking drift in quantum information processors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19074-4
– volume: 16
  start-page: 1184
  year: 2020
  end-page: 1188
  ident: CR11
  article-title: Efficient learning of quantum noise
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0992-8
– ident: CR32
– volume: 123
  start-page: 030503
  year: 2019
  ident: CR15
  article-title: Direct randomized benchmarking for multiqubit devices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.030503
– volume: 117
  start-page: 170502
  year: 2016
  ident: CR5
  article-title: Comparing experiments to the fault-tolerance threshold
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.170502
– volume: 8
  year: 2017
  ident: CR12
  article-title: Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14485
– ident: CR41
– volume: 10
  year: 2019
  ident: CR9
  article-title: Characterizing large-scale quantum computers via cycle benchmarking
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13068-7
– volume: 4
  start-page: 362
  year: 2020
  ident: CR33
  article-title: A volumetric framework for quantum computer benchmarks
  publication-title: Quantum
  doi: 10.22331/q-2020-11-15-362
– volume: 94
  start-page: 052325
  year: 2016
  ident: CR35
  article-title: Noise tailoring for scalable quantum computation via randomized compiling
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.052325
– volume: 124
  start-page: 130501
  year: 2020
  ident: CR27
  article-title: Fault-tolerant thresholds for the surface code in excess of 5% under biased noise
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.130501
– volume: 96
  start-page: 022330
  year: 2017
  ident: CR30
  article-title: Efficient gates for quantum computing
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.022330
– volume: 8
  year: 2017
  ident: 1409_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14485
– volume: 123
  start-page: 030503
  year: 2019
  ident: 1409_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.030503
– volume: 434
  start-page: 39
  year: 2005
  ident: 1409_CR37
  publication-title: Nature
  doi: 10.1038/nature03350
– volume: 10
  year: 2019
  ident: 1409_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13068-7
– volume: 120
  start-page: 050505
  year: 2018
  ident: 1409_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.050505
– volume: 108
  start-page: 590
  year: 1957
  ident: 1409_CR34
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.590
– volume: 574
  start-page: 505
  year: 2019
  ident: 1409_CR1
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– ident: 1409_CR31
– volume: 122
  start-page: 200502
  year: 2019
  ident: 1409_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.200502
– ident: 1409_CR23
  doi: 10.1145/3307650.3322273
– volume: 124
  start-page: 130501
  year: 2020
  ident: 1409_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.130501
– ident: 1409_CR40
  doi: 10.5281/zenodo.5546759
– volume: 109
  start-page: 240504
  year: 2012
  ident: 1409_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.240504
– volume: 14
  start-page: 595
  year: 2018
  ident: 1409_CR17
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0124-x
– volume: 114
  start-page: 3305
  year: 2017
  ident: 1409_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1618020114
– volume: 5
  start-page: 044002
  year: 2020
  ident: 1409_CR39
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab8aa4
– volume: 21
  start-page: 113038
  year: 2019
  ident: 1409_CR25
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab4fd6
– volume: 117
  start-page: 170502
  year: 2016
  ident: 1409_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.170502
– volume: 7
  start-page: S347
  year: 2005
  ident: 1409_CR29
  publication-title: J. Opt. B
  doi: 10.1088/1464-4266/7/10/021
– volume: 4
  start-page: 321
  year: 2020
  ident: 1409_CR3
  publication-title: Quantum
  doi: 10.22331/q-2020-09-11-321
– volume: 4
  year: 2018
  ident: 1409_CR7
  publication-title: NPJ Quantum Inf.
  doi: 10.1038/s41534-017-0052-0
– volume: 4
  start-page: 362
  year: 2020
  ident: 1409_CR33
  publication-title: Quantum
  doi: 10.22331/q-2020-11-15-362
– volume: 10
  start-page: 5464
  year: 2019
  ident: 1409_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13534-2
– volume: 94
  start-page: 052325
  year: 2016
  ident: 1409_CR35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.052325
– volume: 21
  start-page: 053016
  year: 2019
  ident: 1409_CR38
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab1800
– volume: 106
  start-page: 180504
  year: 2011
  ident: 1409_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.180504
– volume: 2
  start-page: 128
  year: 1876
  ident: 1409_CR28
  publication-title: Sitzungsber. Akad. Wiss.
– ident: 1409_CR32
– volume: 16
  start-page: 1184
  year: 2020
  ident: 1409_CR11
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0992-8
– volume: 549
  start-page: 203
  year: 2017
  ident: 1409_CR21
  publication-title: Nature
  doi: 10.1038/nature23458
– volume: 11
  year: 2020
  ident: 1409_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19074-4
– volume: 2
  start-page: 79
  year: 2018
  ident: 1409_CR2
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 1
  start-page: 3
  year: 2020
  ident: 1409_CR10
  publication-title: ACM Trans. Quant. Comp.
– volume: 220
  start-page: 44
  year: 2017
  ident: 1409_CR14
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.06.011
– volume: 100
  start-page: 032328
  year: 2019
  ident: 1409_CR18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.032328
– volume: 5
  start-page: 99
  year: 2019
  ident: 1409_CR24
  publication-title: NPJ Quantum Inf.
  doi: 10.1038/s41534-019-0209-0
– volume: 99
  start-page: 032318
  year: 2019
  ident: 1409_CR6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.032318
– volume: 99
  start-page: 022313
  year: 2019
  ident: 1409_CR4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.022313
– volume: 96
  start-page: 022330
  year: 2017
  ident: 1409_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.022330
– volume: 95
  start-page: 042306
  year: 2017
  ident: 1409_CR36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.042306
– ident: 1409_CR41
  doi: 10.5281/zenodo.5197499
SSID ssj0042613
Score 2.685775
Snippet Quantum computers can now run interesting programs, but each processor’s capability—the set of programs that it can run successfully—is limited by hardware...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms 639/705/1042
639/766/259
639/766/483
Algorithms
Atomic
Benchmarks
Circuits
Classical and Continuum Physics
Complex Systems
Computational science
Condensed Matter Physics
Hardware
Information theory and computation
Mathematical and Computational Physics
MATHEMATICS AND COMPUTING
Microprocessors
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Processors
Quantum computers
Quantum computing
Quantum physics
Qubits (quantum computing)
Standard error
Theoretical
Title Measuring the capabilities of quantum computers
URI https://link.springer.com/article/10.1038/s41567-021-01409-7
https://www.proquest.com/docview/2621109117
https://www.osti.gov/servlets/purl/1841976
Volume 18
WOSCitedRecordID wos000733431000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: PCBAR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: M2P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VpEi9AC1UDQHkA7d2Fdtr7-OEWhTEJVFUUSnqZeV9WEKCJOCkv5_Z9booSHDh4osfa83s7sw3880OwLm2tiwFk6RC20AKXXGiS-r5DogduGOu4G2zCT6divlczmLArYm0ym5PDBu1XRofIx_lzEMVXJr8YvVAfNcon12NLTR2oI-eTeYpXZN81u3EHh3QtiCyJHnBaSyaSakYNR64cOIJCh5jSMK3DFNviQtsy-l8kScN5udq_70_fgB70fFMfrYz5TN8cIsvsBsIoKY5hNEkBAtx7ARdwsSgDQ20WQTSybJOHjaogc19YmITiOYI_lyNby6vSWymQAwt2Jq4tC44S3UmZCVZxrQ0jDuK3ppObY440Mra5C6XuqhqV3NXWm1FJVjFGeeU0a_QWywX7hskshRWMEopY1Vhy0oUwppUaJNZX4rNBpB1klQmnjTuG17cqZDxpkK10lcofRWkr_gAvv9_Z9Wes_Hm00OvIIVegj_q1nhOkFkrRKsZulcDOOk0oeKKbNSzGgbwo9Pl8-3Xxzp--2tD-JT7iogQlTmB3vpx407ho_m3vm0ez6D_azyd_T4L8xKvs_LvE-I65BE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH6iQyt6ga5iytIc2lNrTWI7Xg4VqgoIBIw4UImbGy-RkNoZIDNF_Cl-I35OUkSlcuPQcxIn8Vv8ffZbAD5Y78tSCU2quDYQbitJbMkw3iFyBxlE4LJtNiHHY3V6qo8X4KbPhcGwyt4nJkftpw73yEdUIFWJpim3zi8Ido3C09W-hUarFgfh-ipStubL_naU70dKd3dOvu2RrqsAcYyLGQl5zaXIbaF0pUUhrHZCBhZhi809jYTI69rRQLXlVR1qGUpvvaqUqKSQkgkWx30Cixwri2GoID3uPT-yEdYmYJaEcsm6JJ2cqVGDREkSDIhATqOJvLcQDqbRoO-B3L_OZdNyt7vyv03UC1jugHX2tbWEl7AQJq_gWQpwdc1rGB2lzdD4r1mEvJmLGCGFBZ-FJpvW2cU8atj8V-a6JhfNG_j-KF_7FgaT6SSsQqZL5ZVgjAlRcV9WiivvcmVd4THVXAyh6CVnXFdJHRt6_DTpRJ8p00rbRGmbJG0jh_DpzzPnbR2RB-9eQ4UwEQVhKV-HMU9uZiIbLyJ8HMJ6L3nTeZzG3Il9CJ973bm7_O93vXt4tPewtHdydGgO98cHa_CcYvZH2oFah8Hsch424Kn7PTtrLjeTLWTw47F16hYMPj6A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK7gosYL-IwroHPQk3Z2ZnqmHwdCDLCRoJs9aEK8tNOPSUh0F5hdjX_NX0dVz4wEErhx4Dzvqa-66uv-qgvgrfW-LJXQrMLYwApbSWZLTnoH5A4yiFDIttmEnEzU0ZGersC_vhaGZJX9mBgHaj93NEc-ygVRFXRNOao7WcR0b7xzcsqogxSttPbtNFqIHIa_f5C-NdsHe2jrd3k-3v-6-4l1HQaY44VYsJDWhRSpzZSutMiE1U7IwDGFsanPkRx5Xbs85NoWVR1qGUpvvaqUqKSQkguO970HqxI5JskJp-X3PgoQM-FtMWbJ8kLyrmAn5WrUEGmSjMQRxG80k5eC4mCOzn0p4b2yRhtD33j9Lv-0x7DWJdzJx9ZDnsBKmD2FB1H46ppnMPoSJ0nxuxNMhROHuUOUCx-HJpnXyekSkbf8lbiu-UXzHL7dytu-gMFsPgsvIdGl8kpwzoWoCl9WqlDepcq6zFMJuhhC1lvRuG6HdWr08dPElX6uTGt5g5Y30fJGDuH9_2tO2v1Fbjx7g8BhMDuiLX4daaHcwiBLzzCtHMJmjwLTjUSNuYDAED70OLo4fP2zXt18tzfwEKFkPh9MDjfgUU5FIXFiahMGi7Nl2IL77vfiuDl7Hd0igR-3DalzCbFHbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+the+capabilities+of+quantum+computers&rft.jtitle=Nature+physics&rft.au=Proctor%2C+Timothy&rft.au=Rudinger%2C+Kenneth&rft.au=Young%2C+Kevin&rft.au=Nielsen%2C+Erik&rft.date=2022-01-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=1&rft.spage=75&rft.epage=79&rft_id=info:doi/10.1038%2Fs41567-021-01409-7&rft.externalDocID=10_1038_s41567_021_01409_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon