Controlled disassembly of peptide amphiphile fibres

In this paper, the introduction of both a methionine residue and a nitrobenzyl derivative as a labile linker between the peptide part and the hydrophobic alkyl chain of a peptide amphiphile are presented. These modifications are shown not to inhibit the formation of structured assemblies that analog...

Full description

Saved in:
Bibliographic Details
Published in:Journal of peptide science Vol. 14; no. 2; pp. 127 - 133
Main Authors: Löwik, Dennis W. P. M., Meijer, Joris T., Minten, Inge J., van Kalkeren, Henri, Heckenmüller, Lisa, Schulten, Ines, Sliepen, Kwinten, Smittenaar, Peter, van Hest, Jan C. M.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01.02.2008
Subjects:
ISSN:1075-2617, 1099-1387
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the introduction of both a methionine residue and a nitrobenzyl derivative as a labile linker between the peptide part and the hydrophobic alkyl chain of a peptide amphiphile are presented. These modifications are shown not to inhibit the formation of structured assemblies that analogous peptide amphiphiles lacking the linkers are able to form. Moreover, the introduction of either labile linker allows removal of the peptide amphiphile's stabilizing hydrophobic moieties to initiate a controlled disassembly of fibre aggregates. This is achieved by either treatment with CNBr or UV irradiation, respectively. These disassembly mechanisms could be the starting point for methodology that allows further manipulation of self‐assembled peptide amphiphile architectures. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd.
Bibliography:This article is part of the Special Issue of the Journal of Peptide Science entitled “Peptides in Nanotechnology”.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1075-2617
1099-1387
DOI:10.1002/psc.969