A parallel multigrid method of the Cahn–Hilliard equation

► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and scalability. ► We propose a linearly stabilized splitting scheme for a logarithmic free energy. We present a parallel finite difference schem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational materials science Ročník 71; s. 89 - 96
Hlavní autori: Shin, Jaemin, Kim, Sungki, Lee, Dongsun, Kim, Junseok
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.04.2013
Elsevier
Predmet:
ISSN:0927-0256, 1879-0801
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:► We present the parallel multigrid algorithm for solving the Cahn–Hilliard equation. ► We show parallel performances containing the speed-up, efficiency, and scalability. ► We propose a linearly stabilized splitting scheme for a logarithmic free energy. We present a parallel finite difference scheme and its implementation for solving the Cahn–Hilliard equation, which describes the phase separation process. Our numerical algorithm employs an unconditionally gradient stable splitting discretization method. The resulting discrete equations are solved using a parallel multigrid method. This parallel scheme facilitates the solution of large-scale problems. We provide numerical results related to the speed-up, efficiency, and scalability to demonstrate the high performance of our proposed method. We also propose a linearly stabilized splitting scheme for the Cahn–Hilliard equation with logarithmic free energy.
ISSN:0927-0256
1879-0801
DOI:10.1016/j.commatsci.2013.01.008