Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction

•We propose approach for the prediction of the WTI crude oil price.•The values predicted by the proposed method and actual once are statistically equal.•The proposed method indicated performance improvement over existing results. This paper proposes an alternative approach based on a genetic algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 142; S. 266 - 273
Hauptverfasser: Chiroma, Haruna, Abdulkareem, Sameem, Herawan, Tutut
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.03.2015
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•We propose approach for the prediction of the WTI crude oil price.•The values predicted by the proposed method and actual once are statistically equal.•The proposed method indicated performance improvement over existing results. This paper proposes an alternative approach based on a genetic algorithm and neural network (GA–NN) for the prediction of the West Texas Intermediate (WTI) crude oil price. Comparative simulation results suggested that the proposed GA–NN approach is better than the baseline algorithms in terms of prediction accuracy and computational efficiency. Mann–Whitney test results indicated that the WTI crude oil price predicted by the proposed GA–NN and the observed price are statistically equal. Further comparison of the proposed GA–NN with previous studies indicated performance improvement over existing results. The proposed model can be useful in the formulation of policies related to international crude oil price estimations, development plans and industrial production.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2014.12.045