A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction
•A neuro-fuzzy inference system boosted with a recent optimizer is proposed.•A new layer denominated as non-working time adaptation was proposed.•Autoregressive process is applied to generate significant endogenous inputs.•Hourly energy consumption of a Faculty building is accurately predicted. The...
Saved in:
| Published in: | Applied energy Vol. 268; p. 114977 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.06.2020
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A neuro-fuzzy inference system boosted with a recent optimizer is proposed.•A new layer denominated as non-working time adaptation was proposed.•Autoregressive process is applied to generate significant endogenous inputs.•Hourly energy consumption of a Faculty building is accurately predicted.
The accuracy of the prediction of buildings’ energy consumption is being tackled using existing artificial intelligence techniques. However, there is a lack of effort on the development of new techniques for solving that problem and, therefore, achieving higher performance, which is important for the efficient management of energy in many levels. This study addresses this gap by proposing a new hybrid machine learning algorithm that incorporates the adaptive neuro-fuzzy inference system model with a new version of the firefly algorithm denominated as the gender-difference firefly algorithm. We expanded the search space diversification to increase the accuracy on the prediction and adopted the autoregressive process in order to approximate the chaotic behavior of the consumption time series. A new layer, denominated as non-working time adaptation was also integrated so as to decrease the fast variability of the predictions during non-working periods of time. We have applied our algorithm for the consumption prediction on 1 h, 2 h and 3 h ahead horizons. We have obtained improvements on the MAPE and R coefficient when compared with state-of-the-art publications in both a private dataset from the Faculty of Chemistry, located in the city of Murcia, Spain and a public dataset of the consumption of a Retail building located in California, United States. We also show our method’s performance in five more buildings. Our results demonstrate the robustness and the accuracy of our proposal when compared to the traditional adaptive neuro-fuzzy inference system models and also to the different predictive techniques implemented in several pieces of literature. |
|---|---|
| AbstractList | •A neuro-fuzzy inference system boosted with a recent optimizer is proposed.•A new layer denominated as non-working time adaptation was proposed.•Autoregressive process is applied to generate significant endogenous inputs.•Hourly energy consumption of a Faculty building is accurately predicted.
The accuracy of the prediction of buildings’ energy consumption is being tackled using existing artificial intelligence techniques. However, there is a lack of effort on the development of new techniques for solving that problem and, therefore, achieving higher performance, which is important for the efficient management of energy in many levels. This study addresses this gap by proposing a new hybrid machine learning algorithm that incorporates the adaptive neuro-fuzzy inference system model with a new version of the firefly algorithm denominated as the gender-difference firefly algorithm. We expanded the search space diversification to increase the accuracy on the prediction and adopted the autoregressive process in order to approximate the chaotic behavior of the consumption time series. A new layer, denominated as non-working time adaptation was also integrated so as to decrease the fast variability of the predictions during non-working periods of time. We have applied our algorithm for the consumption prediction on 1 h, 2 h and 3 h ahead horizons. We have obtained improvements on the MAPE and R coefficient when compared with state-of-the-art publications in both a private dataset from the Faculty of Chemistry, located in the city of Murcia, Spain and a public dataset of the consumption of a Retail building located in California, United States. We also show our method’s performance in five more buildings. Our results demonstrate the robustness and the accuracy of our proposal when compared to the traditional adaptive neuro-fuzzy inference system models and also to the different predictive techniques implemented in several pieces of literature. The accuracy of the prediction of buildings’ energy consumption is being tackled using existing artificial intelligence techniques. However, there is a lack of effort on the development of new techniques for solving that problem and, therefore, achieving higher performance, which is important for the efficient management of energy in many levels. This study addresses this gap by proposing a new hybrid machine learning algorithm that incorporates the adaptive neuro-fuzzy inference system model with a new version of the firefly algorithm denominated as the gender-difference firefly algorithm. We expanded the search space diversification to increase the accuracy on the prediction and adopted the autoregressive process in order to approximate the chaotic behavior of the consumption time series. A new layer, denominated as non-working time adaptation was also integrated so as to decrease the fast variability of the predictions during non-working periods of time. We have applied our algorithm for the consumption prediction on 1 h, 2 h and 3 h ahead horizons. We have obtained improvements on the MAPE and R coefficient when compared with state-of-the-art publications in both a private dataset from the Faculty of Chemistry, located in the city of Murcia, Spain and a public dataset of the consumption of a Retail building located in California, United States. We also show our method’s performance in five more buildings. Our results demonstrate the robustness and the accuracy of our proposal when compared to the traditional adaptive neuro-fuzzy inference system models and also to the different predictive techniques implemented in several pieces of literature. |
| ArticleNumber | 114977 |
| Author | Chabaa, Samira Jallal, Mohammed Ali González-Vidal, Aurora Skarmeta, Antonio F. Zeroual, Abdelouhab |
| Author_xml | – sequence: 1 givenname: Mohammed Ali surname: Jallal fullname: Jallal, Mohammed Ali email: mohammedali.jallal@edu.uca.ac.ma organization: I2SP Team, Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco – sequence: 2 givenname: Aurora surname: González-Vidal fullname: González-Vidal, Aurora organization: Department of Information and Communication Engineering, Faculty of Informatics, University of Murcia, Murcia 30100, Spain – sequence: 3 givenname: Antonio F. surname: Skarmeta fullname: Skarmeta, Antonio F. organization: Department of Information and Communication Engineering, Faculty of Informatics, University of Murcia, Murcia 30100, Spain – sequence: 4 givenname: Samira surname: Chabaa fullname: Chabaa, Samira organization: I2SP Team, Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco – sequence: 5 givenname: Abdelouhab surname: Zeroual fullname: Zeroual, Abdelouhab organization: I2SP Team, Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco |
| BookMark | eNqFkE1r3DAQhkVJoZtt_0LRsRdvNbIiy9BDQ2jSQCCX5CxkebzRYkuuJBe8vz42bi-55DRf7zvMPJfkwgePhHwFdgAG8vvpYEb0GI_zgTO-NEHUVfWB7EBVvKgB1AXZsZLJgkuoP5HLlE6MMQ6c7cj5mr7MTXQt9TjFUHTT-TxT5zuM6C3SNKeMQ9GYhC01_TFEl18G2oVIsxuWOUaHaa3RmpSdP1Izjr1b1DnQ7Sxqg0_TMGYXPB0jts6u6WfysTN9wi__4p483_56uvldPDze3d9cPxS2FFe5UEw1oGwnVSPYFUOoDFhhQIiyAi65MnKpGymwMqYrLdgabFO1bdUqBU1d7sm3be8Yw58JU9aDSxb73ngMU9JclLXgnEu2SOUmtTGkFLHTY3SDibMGplfY-qT_w9YrbL3BXow_3hity2b9Mkfj-vftPzc7Lhz-Oow6Wbfyb93CNes2uPdWvAL6e6Th |
| CitedBy_id | crossref_primary_10_1007_s10489_021_03083_x crossref_primary_10_1016_j_enbuild_2021_110886 crossref_primary_10_1016_j_enbuild_2021_111379 crossref_primary_10_3390_fermentation11030130 crossref_primary_10_1007_s00500_023_09499_6 crossref_primary_10_1016_j_rser_2024_114284 crossref_primary_10_26599_BDMA_2023_9020030 crossref_primary_10_1038_s41597_023_02023_3 crossref_primary_10_1016_j_geoen_2023_211715 crossref_primary_10_1007_s40815_022_01452_3 crossref_primary_10_3390_en14144378 crossref_primary_10_1016_j_jobe_2022_105577 crossref_primary_10_3390_en15113926 crossref_primary_10_3390_app10238323 crossref_primary_10_1177_1420326X231200560 crossref_primary_10_1186_s42162_025_00483_y crossref_primary_10_1007_s10614_025_10899_z crossref_primary_10_1016_j_nexus_2025_100435 crossref_primary_10_1088_1402_4896_ad4747 crossref_primary_10_1007_s11227_024_06313_4 crossref_primary_10_1016_j_energy_2020_119596 crossref_primary_10_1016_j_buildenv_2022_109536 crossref_primary_10_1016_j_enbenv_2023_04_001 crossref_primary_10_1007_s40042_024_01197_2 crossref_primary_10_1155_2021_7653091 crossref_primary_10_1016_j_ifacol_2022_07_081 crossref_primary_10_1016_j_solener_2021_03_087 crossref_primary_10_1109_TIA_2022_3179222 crossref_primary_10_1155_2021_9961324 crossref_primary_10_1007_s00521_025_11034_7 crossref_primary_10_5327_Z2176_94781286 crossref_primary_10_3390_en15249512 crossref_primary_10_3390_app10186489 crossref_primary_10_3390_resources14040060 crossref_primary_10_3390_su15043725 crossref_primary_10_3390_buildings14010147 crossref_primary_10_1016_j_apenergy_2022_120173 crossref_primary_10_1016_j_matpr_2022_03_003 crossref_primary_10_1109_TFUZZ_2022_3226250 crossref_primary_10_1007_s10470_023_02245_w crossref_primary_10_1007_s12273_023_1028_y crossref_primary_10_1155_2021_6028573 crossref_primary_10_1016_j_jclepro_2024_143060 crossref_primary_10_1109_ACCESS_2024_3443172 crossref_primary_10_1016_j_sciaf_2025_e02560 crossref_primary_10_3233_JIFS_201279 crossref_primary_10_1016_j_egyr_2021_06_014 crossref_primary_10_3390_buildings13051167 crossref_primary_10_1016_j_apenergy_2021_117321 crossref_primary_10_3390_app112311263 crossref_primary_10_1088_1755_1315_981_2_022007 crossref_primary_10_3390_app122010212 crossref_primary_10_3390_su14010326 crossref_primary_10_3390_act10040084 crossref_primary_10_3390_en14175510 crossref_primary_10_1016_j_tsep_2024_102582 crossref_primary_10_1088_2631_8695_adfac8 crossref_primary_10_1016_j_fraope_2025_100350 crossref_primary_10_3390_math10020248 crossref_primary_10_1016_j_apenergy_2022_120182 crossref_primary_10_3390_en17174277 crossref_primary_10_3390_su15097458 crossref_primary_10_3390_smartcities5040073 crossref_primary_10_1007_s40031_023_00963_3 crossref_primary_10_1109_TCYB_2021_3121312 |
| Cites_doi | 10.1093/jigpal/jzv011 10.1016/j.enbuild.2007.03.007 10.1016/j.enbuild.2019.01.034 10.1016/j.apenergy.2019.02.056 10.1109/LGRS.2015.2497085 10.1016/j.autcon.2018.10.020 10.1016/j.egyr.2019.10.009 10.1016/j.rser.2015.09.062 10.1016/j.ijepes.2016.03.012 10.1016/j.ins.2007.03.021 10.1016/j.apenergy.2017.01.009 10.1109/TLA.2018.8327390 10.1080/00207160.2014.907405 10.1016/S0378-4754(99)00142-1 10.1016/j.apenergy.2014.02.057 10.1016/j.jhydrol.2017.09.007 10.1109/TII.2016.2605581 10.1016/j.asoc.2019.03.010 10.1016/j.ins.2016.12.024 10.1109/TSMC.1985.6313399 10.14257/ijhit.2016.9.7.36 10.3390/s17092054 10.1177/0143624417752645 10.1016/j.cherd.2017.08.007 10.1109/ACCESS.2019.2918480 10.1016/j.apm.2014.10.016 10.1016/j.enconman.2013.07.003 10.1016/j.apenergy.2019.03.078 10.3233/IFS-1994-2306 10.1016/j.asoc.2016.07.039 10.1109/TEVC.2004.826071 10.1016/j.energy.2018.09.144 10.1016/0098-3004(84)90020-7 10.1016/j.asoc.2018.02.055 10.1109/CJECE.2018.2883030 10.1016/j.apenergy.2015.02.060 10.1016/j.cnsns.2012.06.009 10.1016/j.jobe.2018.12.013 10.1016/j.eswa.2010.10.021 10.1016/j.asoc.2011.10.016 10.1016/j.enconman.2017.02.006 10.1016/j.jenvman.2006.09.009 10.1016/j.apenergy.2014.12.019 10.1109/21.299710 10.1016/j.enbuild.2019.05.021 10.1016/j.enbuild.2016.05.028 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2020.114977 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2020_114977 S030626192030489X |
| GeographicLocations | California Spain |
| GeographicLocations_xml | – name: Spain – name: California |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-808b18cf68b4050e17a1c4a1443712628a61c4b64e7aaf3c1c91cb7dd7d881b93 |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537357800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 03:18:28 EDT 2025 Sat Nov 29 07:21:41 EST 2025 Tue Nov 18 21:42:04 EST 2025 Fri Feb 23 02:47:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Time series forecasting Gender-difference firefly algorithm Autoregressive process ANFIS Building energy consumption |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-808b18cf68b4050e17a1c4a1443712628a61c4b64e7aaf3c1c91cb7dd7d881b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2439422260 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2439422260 crossref_primary_10_1016_j_apenergy_2020_114977 crossref_citationtrail_10_1016_j_apenergy_2020_114977 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114977 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-15 |
| PublicationDateYYYYMMDD | 2020-06-15 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Electric Company Smart Meter Deployments: Foundation for a Smart Grid 2017. Ibrahim, Khatib (b0275) 2017; 138 Tran, Luong, Chou (b0095) 2019; 116552 Naji S, Shamshirband S, Basser H, Keivani A. Application of adaptive neuro-fuzzy methodology for estimating building energy consumption 2016;53:1520–8. https://doi.org/10.1016/j.rser.2015.09.062. Abonyi Â, Andersen H, Nagy L, Szeifert F. Inverse fuzzy-process-model based direct adaptive control 1999;51:119–32. González-Vidal, Jiménez, Gómez-Skarmeta (b0335) 2019; 196 Terroso-saenz, González-vidal, Skarmeta (b0025) 2017 Wei M, Bai B, Sung AH, Liu Q, Wang J, Cather ME. Predicting injection profiles using ANFIS 2007;177:4445–61. https://doi.org/10.1016/j.ins.2007.03.021. Zhong, Wang, Jia, Mu, Lv (b0065) 2020; 242 Gerez, Silva, Belati, Filho, Member, Costa (b0185) 2019; 7 Yager, Filev (b0240) 1994; 24 Ratnaweera, Halgamuge, Watson (b0265) 2004; 8 Palensky, Member, Dietrich, Member (b0050) 2011; 7 Fotopoulou E, Zafeiropoulos A, Terroso-s F, Sim U, Gonz A, Tsiolis G, et al. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings n.d. https://doi.org/10.3390/s17092054. Yang (b0260) 2008 Abbaspour, Fallah, Linden, Gholamhosseini (b0135) 2015 Su H, Yong B, Du Q. Hyperspectral Band Selection Using Improved Firefly Algorithm 2016;13:68–72. Najimi, Ghafoori, Nikoo (b0270) 2019; 22 Chou, Tran (b0080) 2018 [accessed March 1, 2020]. Yu S, Zhu S, Zhou X. An Improved Firefly Algorithm Based on Nonlinear Time-varying 2016;9:397–410. Smart grids and meters n.d. Cano, Zamora (b0005) 2013 Chen, Lee (b0155) 2019; 5 Wang (b0305) 2016;8. Wang, Song (b0200) 2019; 80 Yu, Su, Lu, Huang (b0310) 2014; 91 Jain, Smith, Culligan, Taylor (b0085) 2014; 123 Tian, Li, Zhang, Lv (b0070) 2019; 186 Bezdek JC. FCM : the fuzzye c-means clustering algorithm 1 ; yk E Y ~ l 1984;10:191–203. Kristjanpolleri, Michell (b0110) 2018 Moreno MV, Terroso-sáenz F, González-vidal A, Valdés-vela M, Skarmeta AF, Zamora MA, et al. Transactions on Industrial Informatics Applicability of Big Data Techniques to Smart Cities Deployments 2016;3203:1–10. https://doi.org/10.1109/TII.2016.2605581. Sad N, Obradovi TD. Hybrid Firefly Model in Routing Heterogeneous Fleet of Vehicles in Logistics 2015;23. https://doi.org/10.1093/jigpal/jzv011. Chen, Gao (b0235) 2012; 12 Aghli, Moussavi-harami, Mortazavi, Mohammadian (b0120) 2018 Wang H, Wang W, Zhou X, Sun H, Zhao J, Yu X. Firefly algorithm with neighborhood attraction 2017;383:374–87. https://doi.org/10.1016/j.ins.2016.12.024. Karaboga, Kaya (b0175) 2016; 49 [accessed December 22, 2019]. Yaseen, Ebtehaj, Bonakdari, Deo, Mehr, Hanna (b0170) 2017 Mohammadi, Behnood, Arashpour (b0115) 2020; 232 Lu, Wang, Sun, Yan (b0045) 2015; 147 Gandomi, Yang, Talatahari, Alavi (b0300) 2013; 18 Ramallo-gonz AP, Gonz A, Terroso-s F. Data driven modeling for energy consumption prediction in smart buildings 2017:4562–9. Baghban, Sasanipour, Haratipour, Alizad, Ayouri (b0130) 2017 Abdulshahed, Longstaff, Fletcher, Myers (b0125) 2015; 39 Rezakazemi, Dashti, Asghari, Shirazian (b0165) 2017 Jang (b0205) 1993; 23 Dekhici, Redjem, Belkadi, El (b0195) 2019; 42 Cassettari, Bendato, Mosca, Mosca (b0060) 2017; 190 Benmouiza, Cheknane (b0345) 2013 Cukla AR, Izquierdo RC, Borges FA, Perondi EA, Lorini FJ. Optimum Cascade Control Tuning of a Hydraulic Actuator Based on Firefly Metaheuristic Algorithm 2018;16:384–90. Jallal, Chabaa, Zeroual (b0315) 2019 Jagatheesan K, Member S, Anand B, Samanta S, Dey N, Amira S, et al. Design of a Proportional-Integral-Derivative Controller for an Automatic Generation Control of Multi-area Power Thermal Systems Using Firefly Algorithm n.d.:1–14. https://doi.org/10.1109/JAS.2017.7510436.K. Gupta, Kumar, Sahoo, Sahu, Sarangi (b0160) 2017; 4 Jallal, Chabaa, Zeroual (b0320) 2019 Pattern (b0255) 1981 Yang-Seon Kim and (b0055) 2015. n.d.; 121 Zhang, Deb, Eang, Yang, Wei (b0100) 2016; 126 Ekici, Aksoy (b0140) 2011; 38 Chiu SL. Fuzzy model identification based on cluster estimation abstract. J Intell Fuzzy Syst 1994;2:267–78. Lü, Lu, Kibert, Viljanen (b0090) 2015; 144 Taylor P, Dunn JC. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters 2008:37–41. Aghniaey S, Lawrence TM, Mohammadpour J, Song W, Watson T, Boudreau MC. Optimizing thermal comfort considerations with electrical demand response program implementation 2018:1–13. https://doi.org/10.1177/0143624417752645. Gunay, Shen, Newsham (b0035) 2019; 97 Pérez-Lombard, Ortiz, Pout (b0010) 2008; 40 Aqil M, Kita I, Yano A, Nishiyama S. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool 2007;85:215–23. https://doi.org/10.1016/j.jenvman.2006.09.009. Fathy, Kassem (b0105) 2018 Barak, Sadegh (b0150) 2016; 82 Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Applications to Modeling and Control 1985:116–32. Wei, Xia, Pan, Wu, Zhang, Han (b0075) 2019; 240 Long-term energy consumption & outdoor air temperature for 11 commercial buildings n.d. Yang-Seon Kim and (10.1016/j.apenergy.2020.114977_b0055) 2015; 121 Lü (10.1016/j.apenergy.2020.114977_b0090) 2015; 144 Jain (10.1016/j.apenergy.2020.114977_b0085) 2014; 123 Yang (10.1016/j.apenergy.2020.114977_b0260) 2008 10.1016/j.apenergy.2020.114977_b0290 Terroso-saenz (10.1016/j.apenergy.2020.114977_b0025) 2017 Pérez-Lombard (10.1016/j.apenergy.2020.114977_b0010) 2008; 40 Mohammadi (10.1016/j.apenergy.2020.114977_b0115) 2020; 232 Yager (10.1016/j.apenergy.2020.114977_b0240) 1994; 24 Zhang (10.1016/j.apenergy.2020.114977_b0100) 2016; 126 10.1016/j.apenergy.2020.114977_b0285 Abdulshahed (10.1016/j.apenergy.2020.114977_b0125) 2015; 39 Fathy (10.1016/j.apenergy.2020.114977_b0105) 2018 Jang (10.1016/j.apenergy.2020.114977_b0205) 1993; 23 10.1016/j.apenergy.2020.114977_b0245 10.1016/j.apenergy.2020.114977_b0325 Pattern (10.1016/j.apenergy.2020.114977_b0255) 1981 Rezakazemi (10.1016/j.apenergy.2020.114977_b0165) 2017 Karaboga (10.1016/j.apenergy.2020.114977_b0175) 2016; 49 Jallal (10.1016/j.apenergy.2020.114977_b0320) 2019 Gerez (10.1016/j.apenergy.2020.114977_b0185) 2019; 7 Cassettari (10.1016/j.apenergy.2020.114977_b0060) 2017; 190 Abbaspour (10.1016/j.apenergy.2020.114977_b0135) 2015 10.1016/j.apenergy.2020.114977_b0180 10.1016/j.apenergy.2020.114977_b0295 Yaseen (10.1016/j.apenergy.2020.114977_b0170) 2017 10.1016/j.apenergy.2020.114977_b0250 10.1016/j.apenergy.2020.114977_b0330 Yu (10.1016/j.apenergy.2020.114977_b0310) 2014; 91 10.1016/j.apenergy.2020.114977_b0210 10.1016/j.apenergy.2020.114977_b0015 Lu (10.1016/j.apenergy.2020.114977_b0045) 2015; 147 Gupta (10.1016/j.apenergy.2020.114977_b0160) 2017; 4 10.1016/j.apenergy.2020.114977_b0215 Wei (10.1016/j.apenergy.2020.114977_b0075) 2019; 240 González-Vidal (10.1016/j.apenergy.2020.114977_b0335) 2019; 196 Barak (10.1016/j.apenergy.2020.114977_b0150) 2016; 82 Gandomi (10.1016/j.apenergy.2020.114977_b0300) 2013; 18 Gunay (10.1016/j.apenergy.2020.114977_b0035) 2019; 97 10.1016/j.apenergy.2020.114977_b0190 Palensky (10.1016/j.apenergy.2020.114977_b0050) 2011; 7 Aghli (10.1016/j.apenergy.2020.114977_b0120) 2018 Tran (10.1016/j.apenergy.2020.114977_b0095) 2019; 116552 10.1016/j.apenergy.2020.114977_b0020 Benmouiza (10.1016/j.apenergy.2020.114977_b0345) 2013 Cano (10.1016/j.apenergy.2020.114977_b0005) 2013 10.1016/j.apenergy.2020.114977_b0220 Chen (10.1016/j.apenergy.2020.114977_b0235) 2012; 12 10.1016/j.apenergy.2020.114977_b0340 10.1016/j.apenergy.2020.114977_b0145 Kristjanpolleri (10.1016/j.apenergy.2020.114977_b0110) 2018 Chen (10.1016/j.apenergy.2020.114977_b0155) 2019; 5 10.1016/j.apenergy.2020.114977_b0225 Chou (10.1016/j.apenergy.2020.114977_b0080) 2018 Tian (10.1016/j.apenergy.2020.114977_b0070) 2019; 186 Ibrahim (10.1016/j.apenergy.2020.114977_b0275) 2017; 138 Wang (10.1016/j.apenergy.2020.114977_b0305) 20168 Jallal (10.1016/j.apenergy.2020.114977_b0315) 2019 Baghban (10.1016/j.apenergy.2020.114977_b0130) 2017 Zhong (10.1016/j.apenergy.2020.114977_b0065) 2020; 242 Dekhici (10.1016/j.apenergy.2020.114977_b0195) 2019; 42 Ratnaweera (10.1016/j.apenergy.2020.114977_b0265) 2004; 8 10.1016/j.apenergy.2020.114977_b0280 10.1016/j.apenergy.2020.114977_b0040 10.1016/j.apenergy.2020.114977_b0030 10.1016/j.apenergy.2020.114977_b0230 Najimi (10.1016/j.apenergy.2020.114977_b0270) 2019; 22 Ekici (10.1016/j.apenergy.2020.114977_b0140) 2011; 38 Wang (10.1016/j.apenergy.2020.114977_b0200) 2019; 80 |
| References_xml | – volume: 7 start-page: 67874 year: 2019 end-page: 67888 ident: b0185 article-title: Distribution Network Reconfiguration Using Selective Firefly Algorithm and a Load Flow Analysis Criterion for Reducing the Search Space publication-title: IEEE Access – reference: Aqil M, Kita I, Yano A, Nishiyama S. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool 2007;85:215–23. https://doi.org/10.1016/j.jenvman.2006.09.009. – year: 2008 ident: b0260 article-title: Nature-inspired metaheuristic algorithms – volume: 147 start-page: 49 year: 2015 end-page: 58 ident: b0045 article-title: Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming publication-title: Appl Energy – reference: Jagatheesan K, Member S, Anand B, Samanta S, Dey N, Amira S, et al. Design of a Proportional-Integral-Derivative Controller for an Automatic Generation Control of Multi-area Power Thermal Systems Using Firefly Algorithm n.d.:1–14. https://doi.org/10.1109/JAS.2017.7510436.K. – volume: 186 start-page: 230 year: 2019 end-page: 243 ident: b0070 article-title: Energy & Buildings Data driven parallel prediction of building energy consumption using generative adversarial nets publication-title: Energy Build – reference: Long-term energy consumption & outdoor air temperature for 11 commercial buildings n.d. – volume: 91 start-page: 2507 year: 2014 end-page: 2513 ident: b0310 article-title: A novel wise step strategy for firefly algorithm publication-title: Int J Comp Mathem – volume: 18 start-page: 89 year: 2013 end-page: 98 ident: b0300 article-title: Commun Nonlinear Sci Numer Simulat Firefly algorithm with chaos publication-title: Commun Nonlinear Sci Numer Simul – volume: 232 year: 2020 ident: b0115 article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Constr Build Mater – year: 2018 ident: b0120 article-title: Evaluation of new method for estimation of fracture parameters using conventional petrophysical logs and ANFIS in the carbonate heterogeneous reservoirs publication-title: J Pet Sci Eng – volume: 138 start-page: 413 year: 2017 end-page: 425 ident: b0275 article-title: A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm publication-title: Energy Convers Manag – reference: Wei M, Bai B, Sung AH, Liu Q, Wang J, Cather ME. Predicting injection profiles using ANFIS 2007;177:4445–61. https://doi.org/10.1016/j.ins.2007.03.021. – volume: 123 start-page: 168 year: 2014 end-page: 178 ident: b0085 article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression : Investigating the impact of temporal and spatial monitoring granularity on performance accuracy publication-title: Appl Energy – volume: 49 start-page: 423 year: 2016 end-page: 436 ident: b0175 article-title: An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training publication-title: Appl Soft Comput J – reference: Sad N, Obradovi TD. Hybrid Firefly Model in Routing Heterogeneous Fleet of Vehicles in Logistics 2015;23. https://doi.org/10.1093/jigpal/jzv011. – reference: [accessed December 22, 2019]. – volume: 23 year: 1993 ident: b0205 article-title: ANFIS : Adap tive-Ne twork-Based Fuzzy Inference publication-title: System – start-page: 1 year: 2013 end-page: 8 ident: b0005 article-title: G AFS publication-title: Context-Aware Energy Efficiency Smart Build – reference: Ramallo-gonz AP, Gonz A, Terroso-s F. Data driven modeling for energy consumption prediction in smart buildings 2017:4562–9. – volume: 240 start-page: 276 year: 2019 end-page: 294 ident: b0075 article-title: Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks publication-title: Appl Energy – year: 2018 ident: b0080 article-title: Forecasting Energy Consumption Time Series using Machine Learning publication-title: Energy – volume: 42 start-page: 20 year: 2019 end-page: 26 ident: b0195 article-title: Discretization of the Firefly Algorithm for Home Care Discrétisation de l ’ Algorithme de Lucioles pour le Soin à Domicile publication-title: Can J Electr Comput Eng – year: 2019 ident: b0315 article-title: A novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackers publication-title: Renew Energy – year: 2017 ident: b0170 article-title: Novel approach for streamflow forecasting using a hybrid ANFIS- FFA model publication-title: J Hydrol – reference: Naji S, Shamshirband S, Basser H, Keivani A. Application of adaptive neuro-fuzzy methodology for estimating building energy consumption 2016;53:1520–8. https://doi.org/10.1016/j.rser.2015.09.062. – volume: 7 start-page: 381 year: 2011 end-page: 388 ident: b0050 article-title: Demand Side Management: Demand Response publication-title: Intell Energy Syst, Smart Loads – reference: Yu S, Zhu S, Zhou X. An Improved Firefly Algorithm Based on Nonlinear Time-varying 2016;9:397–410. – volume: 121 start-page: 353 year: 2015. n.d. end-page: 361 ident: b0055 article-title: Jelena Srebric. Improvement of building energy simulation accuracy with occupancy schedules derived from hourly building electricity consumption publication-title: Ashrae Trans – volume: 190 start-page: 841 year: 2017 end-page: 851 ident: b0060 article-title: Energy Resources Intelligent Management using on line real-time simulation : A decision support tool for sustainable manufacturing publication-title: Appl Energy – volume: 82 start-page: 92 year: 2016 end-page: 104 ident: b0150 article-title: Electrical Power and Energy Systems Forecasting energy consumption using ensemble ARIMA – ANFIS hybrid algorithm publication-title: Int J Electr Power Energy Syst – volume: 40 start-page: 394 year: 2008 end-page: 398 ident: b0010 article-title: A review on buildings energy consumption information publication-title: Energy Build – volume: 116552 year: 2019 ident: b0095 article-title: Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings publication-title: Energy – volume: 144 start-page: 261 year: 2015 end-page: 275 ident: b0090 article-title: Modeling and forecasting energy consumption for heterogeneous buildings using a physical – statistical approach publication-title: Appl Energy – reference: Bezdek JC. FCM : the fuzzye c-means clustering algorithm 1 ; yk E Y ~ l 1984;10:191–203. – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: b0265 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans Evol Comput – reference: Wang H, Wang W, Zhou X, Sun H, Zhao J, Yu X. Firefly algorithm with neighborhood attraction 2017;383:374–87. https://doi.org/10.1016/j.ins.2016.12.024. – reference: Chiu SL. Fuzzy model identification based on cluster estimation abstract. J Intell Fuzzy Syst 1994;2:267–78. – volume: 97 start-page: 96 year: 2019 end-page: 109 ident: b0035 article-title: Automation in Construction Data analytics to improve building performance : A critical review publication-title: Autom Constr – year: 2018 ident: b0105 article-title: Antlion Optimizer-ANFIS Load Frequency Control for Multi-Interconnected Plants Comprising Photovoltaic and Wind Turbine publication-title: ISA Trans – reference: Cukla AR, Izquierdo RC, Borges FA, Perondi EA, Lorini FJ. Optimum Cascade Control Tuning of a Hydraulic Actuator Based on Firefly Metaheuristic Algorithm 2018;16:384–90. – year: 2019 ident: b0320 article-title: A new Artificial Multi-Neural Approach to estimate the hourly global solar radiation in a semi-arid climate site publication-title: Theor Appl Climatol – start-page: 1 year: 2017 end-page: 15 ident: b0165 article-title: H2-selective mixed matrix membranes modeling publication-title: Int J Hydrogen Energy – reference: Abonyi Â, Andersen H, Nagy L, Szeifert F. Inverse fuzzy-process-model based direct adaptive control 1999;51:119–32. – reference: [accessed March 1, 2020]. – reference: Smart grids and meters n.d. – reference: Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Applications to Modeling and Control 1985:116–32. – year: 1981 ident: b0255 article-title: Recognition with Fuzzy Objective Function Algorithms publication-title: Plenum Press. New York London – reference: Electric Company Smart Meter Deployments: Foundation for a Smart Grid 2017. – reference: Fotopoulou E, Zafeiropoulos A, Terroso-s F, Sim U, Gonz A, Tsiolis G, et al. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings n.d. https://doi.org/10.3390/s17092054. – volume: 24 start-page: 1279 year: 1994 end-page: 1284 ident: b0240 article-title: Approximate Clustering Via the Mountain Method publication-title: IEEE Trans Syst Man Cybern – year: 2018 ident: b0110 article-title: A Stock Market Risk Forecasting model through integration of switching regime, ANFIS and GARCH techniques publication-title: Appl Soft Comput J – volume: 12 start-page: 759 year: 2012 end-page: 767 ident: b0235 article-title: Soft computing methods applied to train station parking in urban rail transit publication-title: Appl Soft Comput J – reference: Moreno MV, Terroso-sáenz F, González-vidal A, Valdés-vela M, Skarmeta AF, Zamora MA, et al. Transactions on Industrial Informatics Applicability of Big Data Techniques to Smart Cities Deployments 2016;3203:1–10. https://doi.org/10.1109/TII.2016.2605581. – volume: 196 start-page: 71 year: 2019 end-page: 82 ident: b0335 article-title: A methodology for energy multivariate time series forecasting in smart buildings based on feature selection publication-title: Energy Build – volume: 242 start-page: 403 year: 2020 end-page: 414 ident: b0065 article-title: Vector field-based support vector regression for building energy consumption prediction publication-title: Appl Energy – volume: 22 start-page: 216 year: 2019 end-page: 226 ident: b0270 article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm publication-title: J Build Eng – year: 2016;8. ident: b0305 article-title: Firefly algorithm with random attraction Wenjun publication-title: Wang Shahryar Rahnamayan – volume: 39 start-page: 1837 year: 2015 end-page: 1852 ident: b0125 article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera publication-title: Appl Math Model – year: 2017 ident: b0025 article-title: An open IoT platform for the management and analysis of energy data An Open IoT Platform for the Management and Analysis of Energy Data publication-title: Futur Gener Comput Syst – volume: 4 start-page: 60 year: 2017 end-page: 68 ident: b0160 article-title: Performance measurement of plate fi n heat exchanger by exploration : ANN, ANFIS, GA, and SA publication-title: J Comput Des Eng – volume: 38 start-page: 5352 year: 2011 end-page: 5358 ident: b0140 article-title: Expert Systems with Applications Prediction of building energy needs in early stage of design by using ANFIS publication-title: Expert Syst Appl – year: 2017 ident: b0130 article-title: ANFIS Modeling of Rhamnolipid Breakthrough Curves on Activated Carbon publication-title: Chem Eng Res Des – reference: Taylor P, Dunn JC. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters 2008:37–41. – reference: Su H, Yong B, Du Q. Hyperspectral Band Selection Using Improved Firefly Algorithm 2016;13:68–72. – volume: 80 start-page: 107 year: 2019 end-page: 124 ident: b0200 article-title: A novel firefly algorithm based on gender difference and its convergence publication-title: Appl Soft Comput J – year: 2013 ident: b0345 article-title: Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models publication-title: Energy Convers Manag – reference: Aghniaey S, Lawrence TM, Mohammadpour J, Song W, Watson T, Boudreau MC. Optimizing thermal comfort considerations with electrical demand response program implementation 2018:1–13. https://doi.org/10.1177/0143624417752645. – volume: 5 start-page: 1509 year: 2019 end-page: 1524 ident: b0155 article-title: Electricity consumption prediction for buildings using multiple adaptive network-based fuzzy inference system models and gray relational analysis publication-title: Energy Rep – volume: 126 start-page: 94 year: 2016 end-page: 103 ident: b0100 article-title: Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique publication-title: Energy Build – year: 2015 ident: b0135 article-title: A Novel Approach for Removing ECG Interferences from Surface EMG signals Using a Combined ANFIS and Wavelet publication-title: J Electromyogr Kinesiol – volume: 23 year: 1993 ident: 10.1016/j.apenergy.2020.114977_b0205 article-title: ANFIS : Adap tive-Ne twork-Based Fuzzy Inference publication-title: System – volume: 7 start-page: 381 year: 2011 ident: 10.1016/j.apenergy.2020.114977_b0050 article-title: Demand Side Management: Demand Response publication-title: Intell Energy Syst, Smart Loads – ident: 10.1016/j.apenergy.2020.114977_b0180 doi: 10.1093/jigpal/jzv011 – volume: 40 start-page: 394 issue: 3 year: 2008 ident: 10.1016/j.apenergy.2020.114977_b0010 article-title: A review on buildings energy consumption information publication-title: Energy Build doi: 10.1016/j.enbuild.2007.03.007 – volume: 186 start-page: 230 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0070 article-title: Energy & Buildings Data driven parallel prediction of building energy consumption using generative adversarial nets publication-title: Energy Build doi: 10.1016/j.enbuild.2019.01.034 – volume: 240 start-page: 276 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0075 article-title: Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.02.056 – ident: 10.1016/j.apenergy.2020.114977_b0015 – year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0315 article-title: A novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackers publication-title: Renew Energy – ident: 10.1016/j.apenergy.2020.114977_b0190 doi: 10.1109/LGRS.2015.2497085 – volume: 97 start-page: 96 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0035 article-title: Automation in Construction Data analytics to improve building performance : A critical review publication-title: Autom Constr doi: 10.1016/j.autcon.2018.10.020 – volume: 5 start-page: 1509 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0155 article-title: Electricity consumption prediction for buildings using multiple adaptive network-based fuzzy inference system models and gray relational analysis publication-title: Energy Rep doi: 10.1016/j.egyr.2019.10.009 – ident: 10.1016/j.apenergy.2020.114977_b0145 doi: 10.1016/j.rser.2015.09.062 – volume: 82 start-page: 92 year: 2016 ident: 10.1016/j.apenergy.2020.114977_b0150 article-title: Electrical Power and Energy Systems Forecasting energy consumption using ensemble ARIMA – ANFIS hybrid algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2016.03.012 – ident: 10.1016/j.apenergy.2020.114977_b0230 doi: 10.1016/j.ins.2007.03.021 – volume: 190 start-page: 841 year: 2017 ident: 10.1016/j.apenergy.2020.114977_b0060 article-title: Energy Resources Intelligent Management using on line real-time simulation : A decision support tool for sustainable manufacturing publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.009 – ident: 10.1016/j.apenergy.2020.114977_b0285 doi: 10.1109/TLA.2018.8327390 – volume: 91 start-page: 2507 issue: 12 year: 2014 ident: 10.1016/j.apenergy.2020.114977_b0310 article-title: A novel wise step strategy for firefly algorithm publication-title: Int J Comp Mathem doi: 10.1080/00207160.2014.907405 – ident: 10.1016/j.apenergy.2020.114977_b0215 doi: 10.1016/S0378-4754(99)00142-1 – volume: 123 start-page: 168 year: 2014 ident: 10.1016/j.apenergy.2020.114977_b0085 article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression : Investigating the impact of temporal and spatial monitoring granularity on performance accuracy publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.057 – year: 2017 ident: 10.1016/j.apenergy.2020.114977_b0170 article-title: Novel approach for streamflow forecasting using a hybrid ANFIS- FFA model publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.09.007 – ident: 10.1016/j.apenergy.2020.114977_b0325 doi: 10.1109/TII.2016.2605581 – year: 2015 ident: 10.1016/j.apenergy.2020.114977_b0135 article-title: A Novel Approach for Removing ECG Interferences from Surface EMG signals Using a Combined ANFIS and Wavelet publication-title: J Electromyogr Kinesiol – start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2020.114977_b0165 article-title: H2-selective mixed matrix membranes modeling publication-title: Int J Hydrogen Energy – volume: 80 start-page: 107 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0200 article-title: A novel firefly algorithm based on gender difference and its convergence publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.03.010 – ident: 10.1016/j.apenergy.2020.114977_b0295 doi: 10.1016/j.ins.2016.12.024 – ident: 10.1016/j.apenergy.2020.114977_b0210 doi: 10.1109/TSMC.1985.6313399 – year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0320 article-title: A new Artificial Multi-Neural Approach to estimate the hourly global solar radiation in a semi-arid climate site publication-title: Theor Appl Climatol – ident: 10.1016/j.apenergy.2020.114977_b0290 doi: 10.14257/ijhit.2016.9.7.36 – ident: 10.1016/j.apenergy.2020.114977_b0030 doi: 10.3390/s17092054 – ident: 10.1016/j.apenergy.2020.114977_b0040 doi: 10.1177/0143624417752645 – year: 2017 ident: 10.1016/j.apenergy.2020.114977_b0130 article-title: ANFIS Modeling of Rhamnolipid Breakthrough Curves on Activated Carbon publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2017.08.007 – volume: 7 start-page: 67874 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0185 article-title: Distribution Network Reconfiguration Using Selective Firefly Algorithm and a Load Flow Analysis Criterion for Reducing the Search Space publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918480 – year: 2017 ident: 10.1016/j.apenergy.2020.114977_b0025 article-title: An open IoT platform for the management and analysis of energy data An Open IoT Platform for the Management and Analysis of Energy Data publication-title: Futur Gener Comput Syst – volume: 39 start-page: 1837 year: 2015 ident: 10.1016/j.apenergy.2020.114977_b0125 article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera publication-title: Appl Math Model doi: 10.1016/j.apm.2014.10.016 – year: 2013 ident: 10.1016/j.apenergy.2020.114977_b0345 article-title: Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.07.003 – volume: 242 start-page: 403 year: 2020 ident: 10.1016/j.apenergy.2020.114977_b0065 article-title: Vector field-based support vector regression for building energy consumption prediction publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.078 – ident: 10.1016/j.apenergy.2020.114977_b0250 – ident: 10.1016/j.apenergy.2020.114977_b0220 doi: 10.3233/IFS-1994-2306 – volume: 49 start-page: 423 year: 2016 ident: 10.1016/j.apenergy.2020.114977_b0175 article-title: An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2016.07.039 – ident: 10.1016/j.apenergy.2020.114977_b0330 – volume: 8 start-page: 240 year: 2004 ident: 10.1016/j.apenergy.2020.114977_b0265 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2004.826071 – year: 2018 ident: 10.1016/j.apenergy.2020.114977_b0080 article-title: Forecasting Energy Consumption Time Series using Machine Learning publication-title: Energy doi: 10.1016/j.energy.2018.09.144 – ident: 10.1016/j.apenergy.2020.114977_b0225 doi: 10.1016/0098-3004(84)90020-7 – year: 2018 ident: 10.1016/j.apenergy.2020.114977_b0110 article-title: A Stock Market Risk Forecasting model through integration of switching regime, ANFIS and GARCH techniques publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2018.02.055 – ident: 10.1016/j.apenergy.2020.114977_b0340 – year: 2018 ident: 10.1016/j.apenergy.2020.114977_b0105 article-title: Antlion Optimizer-ANFIS Load Frequency Control for Multi-Interconnected Plants Comprising Photovoltaic and Wind Turbine publication-title: ISA Trans – year: 1981 ident: 10.1016/j.apenergy.2020.114977_b0255 article-title: Recognition with Fuzzy Objective Function Algorithms publication-title: Plenum Press. New York London – volume: 42 start-page: 20 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0195 article-title: Discretization of the Firefly Algorithm for Home Care Discrétisation de l ’ Algorithme de Lucioles pour le Soin à Domicile publication-title: Can J Electr Comput Eng doi: 10.1109/CJECE.2018.2883030 – volume: 147 start-page: 49 year: 2015 ident: 10.1016/j.apenergy.2020.114977_b0045 article-title: Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.060 – volume: 18 start-page: 89 year: 2013 ident: 10.1016/j.apenergy.2020.114977_b0300 article-title: Commun Nonlinear Sci Numer Simulat Firefly algorithm with chaos publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.06.009 – volume: 22 start-page: 216 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0270 article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm publication-title: J Build Eng doi: 10.1016/j.jobe.2018.12.013 – volume: 38 start-page: 5352 year: 2011 ident: 10.1016/j.apenergy.2020.114977_b0140 article-title: Expert Systems with Applications Prediction of building energy needs in early stage of design by using ANFIS publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.10.021 – ident: 10.1016/j.apenergy.2020.114977_b0280 – volume: 12 start-page: 759 year: 2012 ident: 10.1016/j.apenergy.2020.114977_b0235 article-title: Soft computing methods applied to train station parking in urban rail transit publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2011.10.016 – volume: 138 start-page: 413 year: 2017 ident: 10.1016/j.apenergy.2020.114977_b0275 article-title: A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.02.006 – ident: 10.1016/j.apenergy.2020.114977_b0245 doi: 10.1016/j.jenvman.2006.09.009 – volume: 121 start-page: 353 issue: 1 year: 2015 ident: 10.1016/j.apenergy.2020.114977_b0055 article-title: Jelena Srebric. Improvement of building energy simulation accuracy with occupancy schedules derived from hourly building electricity consumption publication-title: Ashrae Trans – year: 2018 ident: 10.1016/j.apenergy.2020.114977_b0120 article-title: Evaluation of new method for estimation of fracture parameters using conventional petrophysical logs and ANFIS in the carbonate heterogeneous reservoirs publication-title: J Pet Sci Eng – volume: 144 start-page: 261 year: 2015 ident: 10.1016/j.apenergy.2020.114977_b0090 article-title: Modeling and forecasting energy consumption for heterogeneous buildings using a physical – statistical approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.12.019 – volume: 24 start-page: 1279 year: 1994 ident: 10.1016/j.apenergy.2020.114977_b0240 article-title: Approximate Clustering Via the Mountain Method publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.299710 – ident: 10.1016/j.apenergy.2020.114977_b0020 – start-page: 1 year: 2013 ident: 10.1016/j.apenergy.2020.114977_b0005 article-title: G AFS publication-title: Context-Aware Energy Efficiency Smart Build – volume: 232 year: 2020 ident: 10.1016/j.apenergy.2020.114977_b0115 article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Constr Build Mater – volume: 196 start-page: 71 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0335 article-title: A methodology for energy multivariate time series forecasting in smart buildings based on feature selection publication-title: Energy Build doi: 10.1016/j.enbuild.2019.05.021 – volume: 116552 year: 2019 ident: 10.1016/j.apenergy.2020.114977_b0095 article-title: Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings publication-title: Energy – year: 20168 ident: 10.1016/j.apenergy.2020.114977_b0305 article-title: Firefly algorithm with random attraction Wenjun publication-title: Wang Shahryar Rahnamayan – volume: 126 start-page: 94 year: 2016 ident: 10.1016/j.apenergy.2020.114977_b0100 article-title: Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique publication-title: Energy Build doi: 10.1016/j.enbuild.2016.05.028 – volume: 4 start-page: 60 year: 2017 ident: 10.1016/j.apenergy.2020.114977_b0160 article-title: Performance measurement of plate fi n heat exchanger by exploration : ANN, ANFIS, GA, and SA publication-title: J Comput Des Eng – year: 2008 ident: 10.1016/j.apenergy.2020.114977_b0260 |
| SSID | ssj0002120 |
| Score | 2.543188 |
| Snippet | •A neuro-fuzzy inference system boosted with a recent optimizer is proposed.•A new layer denominated as non-working time adaptation was... The accuracy of the prediction of buildings’ energy consumption is being tackled using existing artificial intelligence techniques. However, there is a lack of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114977 |
| SubjectTerms | algorithms ANFIS Autoregressive process Building energy consumption buildings California data collection energy fuzzy logic gender differences Gender-difference firefly algorithm prediction Spain time series analysis Time series forecasting |
| Title | A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction |
| URI | https://dx.doi.org/10.1016/j.apenergy.2020.114977 https://www.proquest.com/docview/2439422260 |
| Volume | 268 |
| WOSCitedRecordID | wos000537357800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOEwwmxgAZiVuVkjhN7Bwj1AmQmJAYqLfIsR2akSZV2k5b_yv-Q55jJw3jY-zAJWrdPDfu-9Xvw-8DoVdRRgWjInRSL504E5EGDveU52TEDSWlaeq7smk2QU9P2WwWfRwMvre5MBcFLUt2eRkt_yurYQyYrVNnb8HublIYgNfAdLgC2-H6T4yPR_MrnYY1akpVOtlmu71qYq5sPdmmdLOjpZcc8eJrVefr-cJEG-YL-FxXPm6KNCjBV01QNLeaKqipyqQKiiZx0-w2y1qf9XT8bSvaWhpD0MXpaLd943T-UM21z1yO4iLvYoCqctsc3HuF2jpfcmlujWEZdSc9Pn3j9UIZnTfWDZDzanQy7kUppJwbV_cit1TWqUF07xvHpHW2yVwwoI27_kZNTAMeu9WCIReZDjC_SAHjkDgf86VZ5Fh_xXhH8HPZ7WvisAtSbOPfzpN2nkTPk5h57qA9QoOIDdFe_G46e9-Jf2JrgbYr6KWl__6J_qQRXdMNGoXn7AHat5YKjg3CHqKBKg_Q_V79ygN0ON2lScKtVk6sHqFtjA0IcQ-EuAMh7oMQdyDEADqsQYgNCHEPhNiCEK8rbBaHeyDEOxA-Rp9Ppmdv3jq2y4cj_EmwBhWJpR4TWchSMB5c5VHuiQkHQ9-nHgkJ4yG8T8OJopxnvvBE5ImUSkklA5sr8g_RsKxK9QRhRUmgmK4npfs6ExbJiLkSJA7xJVjC_hEK2l86EbYEvu7EUiR_5_URet3RLU0RmBspopaRiVVljYqaAEZvpH3Zcj6BvV4f4PFSVZtVQnQaOyj0ofv01k90jO7t_mjP0HBdb9RzdFdcrPNV_cKC-AehktWO |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+neuro-fuzzy+inference+system-based+algorithm+for+time+series+forecasting+applied+to+energy+consumption+prediction&rft.jtitle=Applied+energy&rft.au=Jallal%2C+Mohammed+Ali&rft.au=Gonz%C3%A1lez-Vidal%2C+Aurora&rft.au=Skarmeta%2C+Antonio+F.&rft.au=Chabaa%2C+Samira&rft.date=2020-06-15&rft.issn=0306-2619&rft.volume=268&rft.spage=114977&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114977&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_114977 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |