A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction

•A neuro-fuzzy inference system boosted with a recent optimizer is proposed.•A new layer denominated as non-working time adaptation was proposed.•Autoregressive process is applied to generate significant endogenous inputs.•Hourly energy consumption of a Faculty building is accurately predicted. The...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 268; p. 114977
Main Authors: Jallal, Mohammed Ali, González-Vidal, Aurora, Skarmeta, Antonio F., Chabaa, Samira, Zeroual, Abdelouhab
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.06.2020
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A neuro-fuzzy inference system boosted with a recent optimizer is proposed.•A new layer denominated as non-working time adaptation was proposed.•Autoregressive process is applied to generate significant endogenous inputs.•Hourly energy consumption of a Faculty building is accurately predicted. The accuracy of the prediction of buildings’ energy consumption is being tackled using existing artificial intelligence techniques. However, there is a lack of effort on the development of new techniques for solving that problem and, therefore, achieving higher performance, which is important for the efficient management of energy in many levels. This study addresses this gap by proposing a new hybrid machine learning algorithm that incorporates the adaptive neuro-fuzzy inference system model with a new version of the firefly algorithm denominated as the gender-difference firefly algorithm. We expanded the search space diversification to increase the accuracy on the prediction and adopted the autoregressive process in order to approximate the chaotic behavior of the consumption time series. A new layer, denominated as non-working time adaptation was also integrated so as to decrease the fast variability of the predictions during non-working periods of time. We have applied our algorithm for the consumption prediction on 1 h, 2 h and 3 h ahead horizons. We have obtained improvements on the MAPE and R coefficient when compared with state-of-the-art publications in both a private dataset from the Faculty of Chemistry, located in the city of Murcia, Spain and a public dataset of the consumption of a Retail building located in California, United States. We also show our method’s performance in five more buildings. Our results demonstrate the robustness and the accuracy of our proposal when compared to the traditional adaptive neuro-fuzzy inference system models and also to the different predictive techniques implemented in several pieces of literature.
AbstractList The accuracy of the prediction of buildings’ energy consumption is being tackled using existing artificial intelligence techniques. However, there is a lack of effort on the development of new techniques for solving that problem and, therefore, achieving higher performance, which is important for the efficient management of energy in many levels. This study addresses this gap by proposing a new hybrid machine learning algorithm that incorporates the adaptive neuro-fuzzy inference system model with a new version of the firefly algorithm denominated as the gender-difference firefly algorithm. We expanded the search space diversification to increase the accuracy on the prediction and adopted the autoregressive process in order to approximate the chaotic behavior of the consumption time series. A new layer, denominated as non-working time adaptation was also integrated so as to decrease the fast variability of the predictions during non-working periods of time. We have applied our algorithm for the consumption prediction on 1 h, 2 h and 3 h ahead horizons. We have obtained improvements on the MAPE and R coefficient when compared with state-of-the-art publications in both a private dataset from the Faculty of Chemistry, located in the city of Murcia, Spain and a public dataset of the consumption of a Retail building located in California, United States. We also show our method’s performance in five more buildings. Our results demonstrate the robustness and the accuracy of our proposal when compared to the traditional adaptive neuro-fuzzy inference system models and also to the different predictive techniques implemented in several pieces of literature.
•A neuro-fuzzy inference system boosted with a recent optimizer is proposed.•A new layer denominated as non-working time adaptation was proposed.•Autoregressive process is applied to generate significant endogenous inputs.•Hourly energy consumption of a Faculty building is accurately predicted. The accuracy of the prediction of buildings’ energy consumption is being tackled using existing artificial intelligence techniques. However, there is a lack of effort on the development of new techniques for solving that problem and, therefore, achieving higher performance, which is important for the efficient management of energy in many levels. This study addresses this gap by proposing a new hybrid machine learning algorithm that incorporates the adaptive neuro-fuzzy inference system model with a new version of the firefly algorithm denominated as the gender-difference firefly algorithm. We expanded the search space diversification to increase the accuracy on the prediction and adopted the autoregressive process in order to approximate the chaotic behavior of the consumption time series. A new layer, denominated as non-working time adaptation was also integrated so as to decrease the fast variability of the predictions during non-working periods of time. We have applied our algorithm for the consumption prediction on 1 h, 2 h and 3 h ahead horizons. We have obtained improvements on the MAPE and R coefficient when compared with state-of-the-art publications in both a private dataset from the Faculty of Chemistry, located in the city of Murcia, Spain and a public dataset of the consumption of a Retail building located in California, United States. We also show our method’s performance in five more buildings. Our results demonstrate the robustness and the accuracy of our proposal when compared to the traditional adaptive neuro-fuzzy inference system models and also to the different predictive techniques implemented in several pieces of literature.
ArticleNumber 114977
Author Chabaa, Samira
Jallal, Mohammed Ali
González-Vidal, Aurora
Skarmeta, Antonio F.
Zeroual, Abdelouhab
Author_xml – sequence: 1
  givenname: Mohammed Ali
  surname: Jallal
  fullname: Jallal, Mohammed Ali
  email: mohammedali.jallal@edu.uca.ac.ma
  organization: I2SP Team, Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
– sequence: 2
  givenname: Aurora
  surname: González-Vidal
  fullname: González-Vidal, Aurora
  organization: Department of Information and Communication Engineering, Faculty of Informatics, University of Murcia, Murcia 30100, Spain
– sequence: 3
  givenname: Antonio F.
  surname: Skarmeta
  fullname: Skarmeta, Antonio F.
  organization: Department of Information and Communication Engineering, Faculty of Informatics, University of Murcia, Murcia 30100, Spain
– sequence: 4
  givenname: Samira
  surname: Chabaa
  fullname: Chabaa, Samira
  organization: I2SP Team, Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
– sequence: 5
  givenname: Abdelouhab
  surname: Zeroual
  fullname: Zeroual, Abdelouhab
  organization: I2SP Team, Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
BookMark eNqFkE1r3DAQhkVJoZtt_0LRsRdvNbIiy9BDQ2jSQCCX5CxkebzRYkuuJBe8vz42bi-55DRf7zvMPJfkwgePhHwFdgAG8vvpYEb0GI_zgTO-NEHUVfWB7EBVvKgB1AXZsZLJgkuoP5HLlE6MMQ6c7cj5mr7MTXQt9TjFUHTT-TxT5zuM6C3SNKeMQ9GYhC01_TFEl18G2oVIsxuWOUaHaa3RmpSdP1Izjr1b1DnQ7Sxqg0_TMGYXPB0jts6u6WfysTN9wi__4p483_56uvldPDze3d9cPxS2FFe5UEw1oGwnVSPYFUOoDFhhQIiyAi65MnKpGymwMqYrLdgabFO1bdUqBU1d7sm3be8Yw58JU9aDSxb73ngMU9JclLXgnEu2SOUmtTGkFLHTY3SDibMGplfY-qT_w9YrbL3BXow_3hity2b9Mkfj-vftPzc7Lhz-Oow6Wbfyb93CNes2uPdWvAL6e6Th
CitedBy_id crossref_primary_10_1007_s10489_021_03083_x
crossref_primary_10_1016_j_enbuild_2021_110886
crossref_primary_10_1016_j_enbuild_2021_111379
crossref_primary_10_3390_fermentation11030130
crossref_primary_10_1007_s00500_023_09499_6
crossref_primary_10_1016_j_rser_2024_114284
crossref_primary_10_26599_BDMA_2023_9020030
crossref_primary_10_1038_s41597_023_02023_3
crossref_primary_10_1016_j_geoen_2023_211715
crossref_primary_10_1007_s40815_022_01452_3
crossref_primary_10_3390_en14144378
crossref_primary_10_1016_j_jobe_2022_105577
crossref_primary_10_3390_en15113926
crossref_primary_10_3390_app10238323
crossref_primary_10_1177_1420326X231200560
crossref_primary_10_1186_s42162_025_00483_y
crossref_primary_10_1007_s10614_025_10899_z
crossref_primary_10_1016_j_nexus_2025_100435
crossref_primary_10_1088_1402_4896_ad4747
crossref_primary_10_1007_s11227_024_06313_4
crossref_primary_10_1016_j_energy_2020_119596
crossref_primary_10_1016_j_buildenv_2022_109536
crossref_primary_10_1016_j_enbenv_2023_04_001
crossref_primary_10_1007_s40042_024_01197_2
crossref_primary_10_1155_2021_7653091
crossref_primary_10_1016_j_ifacol_2022_07_081
crossref_primary_10_1016_j_solener_2021_03_087
crossref_primary_10_1109_TIA_2022_3179222
crossref_primary_10_1155_2021_9961324
crossref_primary_10_1007_s00521_025_11034_7
crossref_primary_10_5327_Z2176_94781286
crossref_primary_10_3390_en15249512
crossref_primary_10_3390_app10186489
crossref_primary_10_3390_resources14040060
crossref_primary_10_3390_su15043725
crossref_primary_10_3390_buildings14010147
crossref_primary_10_1016_j_apenergy_2022_120173
crossref_primary_10_1016_j_matpr_2022_03_003
crossref_primary_10_1109_TFUZZ_2022_3226250
crossref_primary_10_1007_s10470_023_02245_w
crossref_primary_10_1007_s12273_023_1028_y
crossref_primary_10_1155_2021_6028573
crossref_primary_10_1016_j_jclepro_2024_143060
crossref_primary_10_1109_ACCESS_2024_3443172
crossref_primary_10_1016_j_sciaf_2025_e02560
crossref_primary_10_3233_JIFS_201279
crossref_primary_10_1016_j_egyr_2021_06_014
crossref_primary_10_3390_buildings13051167
crossref_primary_10_1016_j_apenergy_2021_117321
crossref_primary_10_3390_app112311263
crossref_primary_10_1088_1755_1315_981_2_022007
crossref_primary_10_3390_app122010212
crossref_primary_10_3390_su14010326
crossref_primary_10_3390_act10040084
crossref_primary_10_3390_en14175510
crossref_primary_10_1016_j_tsep_2024_102582
crossref_primary_10_1088_2631_8695_adfac8
crossref_primary_10_1016_j_fraope_2025_100350
crossref_primary_10_3390_math10020248
crossref_primary_10_1016_j_apenergy_2022_120182
crossref_primary_10_3390_en17174277
crossref_primary_10_3390_su15097458
crossref_primary_10_3390_smartcities5040073
crossref_primary_10_1007_s40031_023_00963_3
crossref_primary_10_1109_TCYB_2021_3121312
Cites_doi 10.1093/jigpal/jzv011
10.1016/j.enbuild.2007.03.007
10.1016/j.enbuild.2019.01.034
10.1016/j.apenergy.2019.02.056
10.1109/LGRS.2015.2497085
10.1016/j.autcon.2018.10.020
10.1016/j.egyr.2019.10.009
10.1016/j.rser.2015.09.062
10.1016/j.ijepes.2016.03.012
10.1016/j.ins.2007.03.021
10.1016/j.apenergy.2017.01.009
10.1109/TLA.2018.8327390
10.1080/00207160.2014.907405
10.1016/S0378-4754(99)00142-1
10.1016/j.apenergy.2014.02.057
10.1016/j.jhydrol.2017.09.007
10.1109/TII.2016.2605581
10.1016/j.asoc.2019.03.010
10.1016/j.ins.2016.12.024
10.1109/TSMC.1985.6313399
10.14257/ijhit.2016.9.7.36
10.3390/s17092054
10.1177/0143624417752645
10.1016/j.cherd.2017.08.007
10.1109/ACCESS.2019.2918480
10.1016/j.apm.2014.10.016
10.1016/j.enconman.2013.07.003
10.1016/j.apenergy.2019.03.078
10.3233/IFS-1994-2306
10.1016/j.asoc.2016.07.039
10.1109/TEVC.2004.826071
10.1016/j.energy.2018.09.144
10.1016/0098-3004(84)90020-7
10.1016/j.asoc.2018.02.055
10.1109/CJECE.2018.2883030
10.1016/j.apenergy.2015.02.060
10.1016/j.cnsns.2012.06.009
10.1016/j.jobe.2018.12.013
10.1016/j.eswa.2010.10.021
10.1016/j.asoc.2011.10.016
10.1016/j.enconman.2017.02.006
10.1016/j.jenvman.2006.09.009
10.1016/j.apenergy.2014.12.019
10.1109/21.299710
10.1016/j.enbuild.2019.05.021
10.1016/j.enbuild.2016.05.028
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.114977
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_114977
S030626192030489X
GeographicLocations California
Spain
GeographicLocations_xml – name: Spain
– name: California
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-808b18cf68b4050e17a1c4a1443712628a61c4b64e7aaf3c1c91cb7dd7d881b93
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537357800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 03:18:28 EDT 2025
Sat Nov 29 07:21:41 EST 2025
Tue Nov 18 21:42:04 EST 2025
Fri Feb 23 02:47:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time series forecasting
Gender-difference firefly algorithm
Autoregressive process
ANFIS
Building energy consumption
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-808b18cf68b4050e17a1c4a1443712628a61c4b64e7aaf3c1c91cb7dd7d881b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2439422260
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2439422260
crossref_primary_10_1016_j_apenergy_2020_114977
crossref_citationtrail_10_1016_j_apenergy_2020_114977
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114977
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Electric Company Smart Meter Deployments: Foundation for a Smart Grid 2017.
Ibrahim, Khatib (b0275) 2017; 138
Tran, Luong, Chou (b0095) 2019; 116552
Naji S, Shamshirband S, Basser H, Keivani A. Application of adaptive neuro-fuzzy methodology for estimating building energy consumption 2016;53:1520–8. https://doi.org/10.1016/j.rser.2015.09.062.
Abonyi Â, Andersen H, Nagy L, Szeifert F. Inverse fuzzy-process-model based direct adaptive control 1999;51:119–32.
González-Vidal, Jiménez, Gómez-Skarmeta (b0335) 2019; 196
Terroso-saenz, González-vidal, Skarmeta (b0025) 2017
Wei M, Bai B, Sung AH, Liu Q, Wang J, Cather ME. Predicting injection profiles using ANFIS 2007;177:4445–61. https://doi.org/10.1016/j.ins.2007.03.021.
Zhong, Wang, Jia, Mu, Lv (b0065) 2020; 242
Gerez, Silva, Belati, Filho, Member, Costa (b0185) 2019; 7
Yager, Filev (b0240) 1994; 24
Ratnaweera, Halgamuge, Watson (b0265) 2004; 8
Palensky, Member, Dietrich, Member (b0050) 2011; 7
Fotopoulou E, Zafeiropoulos A, Terroso-s F, Sim U, Gonz A, Tsiolis G, et al. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings n.d. https://doi.org/10.3390/s17092054.
Yang (b0260) 2008
Abbaspour, Fallah, Linden, Gholamhosseini (b0135) 2015
Su H, Yong B, Du Q. Hyperspectral Band Selection Using Improved Firefly Algorithm 2016;13:68–72.
Najimi, Ghafoori, Nikoo (b0270) 2019; 22
Chou, Tran (b0080) 2018
[accessed March 1, 2020].
Yu S, Zhu S, Zhou X. An Improved Firefly Algorithm Based on Nonlinear Time-varying 2016;9:397–410.
Smart grids and meters n.d.
Cano, Zamora (b0005) 2013
Chen, Lee (b0155) 2019; 5
Wang (b0305) 2016;8.
Wang, Song (b0200) 2019; 80
Yu, Su, Lu, Huang (b0310) 2014; 91
Jain, Smith, Culligan, Taylor (b0085) 2014; 123
Tian, Li, Zhang, Lv (b0070) 2019; 186
Bezdek JC. FCM : the fuzzye c-means clustering algorithm 1 ; yk E Y ~ l 1984;10:191–203.
Kristjanpolleri, Michell (b0110) 2018
Moreno MV, Terroso-sáenz F, González-vidal A, Valdés-vela M, Skarmeta AF, Zamora MA, et al. Transactions on Industrial Informatics Applicability of Big Data Techniques to Smart Cities Deployments 2016;3203:1–10. https://doi.org/10.1109/TII.2016.2605581.
Sad N, Obradovi TD. Hybrid Firefly Model in Routing Heterogeneous Fleet of Vehicles in Logistics 2015;23. https://doi.org/10.1093/jigpal/jzv011.
Chen, Gao (b0235) 2012; 12
Aghli, Moussavi-harami, Mortazavi, Mohammadian (b0120) 2018
Wang H, Wang W, Zhou X, Sun H, Zhao J, Yu X. Firefly algorithm with neighborhood attraction 2017;383:374–87. https://doi.org/10.1016/j.ins.2016.12.024.
Karaboga, Kaya (b0175) 2016; 49
[accessed December 22, 2019].
Yaseen, Ebtehaj, Bonakdari, Deo, Mehr, Hanna (b0170) 2017
Mohammadi, Behnood, Arashpour (b0115) 2020; 232
Lu, Wang, Sun, Yan (b0045) 2015; 147
Gandomi, Yang, Talatahari, Alavi (b0300) 2013; 18
Ramallo-gonz AP, Gonz A, Terroso-s F. Data driven modeling for energy consumption prediction in smart buildings 2017:4562–9.
Baghban, Sasanipour, Haratipour, Alizad, Ayouri (b0130) 2017
Abdulshahed, Longstaff, Fletcher, Myers (b0125) 2015; 39
Rezakazemi, Dashti, Asghari, Shirazian (b0165) 2017
Jang (b0205) 1993; 23
Dekhici, Redjem, Belkadi, El (b0195) 2019; 42
Cassettari, Bendato, Mosca, Mosca (b0060) 2017; 190
Benmouiza, Cheknane (b0345) 2013
Cukla AR, Izquierdo RC, Borges FA, Perondi EA, Lorini FJ. Optimum Cascade Control Tuning of a Hydraulic Actuator Based on Firefly Metaheuristic Algorithm 2018;16:384–90.
Jallal, Chabaa, Zeroual (b0315) 2019
Jagatheesan K, Member S, Anand B, Samanta S, Dey N, Amira S, et al. Design of a Proportional-Integral-Derivative Controller for an Automatic Generation Control of Multi-area Power Thermal Systems Using Firefly Algorithm n.d.:1–14. https://doi.org/10.1109/JAS.2017.7510436.K.
Gupta, Kumar, Sahoo, Sahu, Sarangi (b0160) 2017; 4
Jallal, Chabaa, Zeroual (b0320) 2019
Pattern (b0255) 1981
Yang-Seon Kim and (b0055) 2015. n.d.; 121
Zhang, Deb, Eang, Yang, Wei (b0100) 2016; 126
Ekici, Aksoy (b0140) 2011; 38
Chiu SL. Fuzzy model identification based on cluster estimation abstract. J Intell Fuzzy Syst 1994;2:267–78.
Lü, Lu, Kibert, Viljanen (b0090) 2015; 144
Taylor P, Dunn JC. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters 2008:37–41.
Aghniaey S, Lawrence TM, Mohammadpour J, Song W, Watson T, Boudreau MC. Optimizing thermal comfort considerations with electrical demand response program implementation 2018:1–13. https://doi.org/10.1177/0143624417752645.
Gunay, Shen, Newsham (b0035) 2019; 97
Pérez-Lombard, Ortiz, Pout (b0010) 2008; 40
Aqil M, Kita I, Yano A, Nishiyama S. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool 2007;85:215–23. https://doi.org/10.1016/j.jenvman.2006.09.009.
Fathy, Kassem (b0105) 2018
Barak, Sadegh (b0150) 2016; 82
Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Applications to Modeling and Control 1985:116–32.
Wei, Xia, Pan, Wu, Zhang, Han (b0075) 2019; 240
Long-term energy consumption & outdoor air temperature for 11 commercial buildings n.d.
Yang-Seon Kim and (10.1016/j.apenergy.2020.114977_b0055) 2015; 121
Lü (10.1016/j.apenergy.2020.114977_b0090) 2015; 144
Jain (10.1016/j.apenergy.2020.114977_b0085) 2014; 123
Yang (10.1016/j.apenergy.2020.114977_b0260) 2008
10.1016/j.apenergy.2020.114977_b0290
Terroso-saenz (10.1016/j.apenergy.2020.114977_b0025) 2017
Pérez-Lombard (10.1016/j.apenergy.2020.114977_b0010) 2008; 40
Mohammadi (10.1016/j.apenergy.2020.114977_b0115) 2020; 232
Yager (10.1016/j.apenergy.2020.114977_b0240) 1994; 24
Zhang (10.1016/j.apenergy.2020.114977_b0100) 2016; 126
10.1016/j.apenergy.2020.114977_b0285
Abdulshahed (10.1016/j.apenergy.2020.114977_b0125) 2015; 39
Fathy (10.1016/j.apenergy.2020.114977_b0105) 2018
Jang (10.1016/j.apenergy.2020.114977_b0205) 1993; 23
10.1016/j.apenergy.2020.114977_b0245
10.1016/j.apenergy.2020.114977_b0325
Pattern (10.1016/j.apenergy.2020.114977_b0255) 1981
Rezakazemi (10.1016/j.apenergy.2020.114977_b0165) 2017
Karaboga (10.1016/j.apenergy.2020.114977_b0175) 2016; 49
Jallal (10.1016/j.apenergy.2020.114977_b0320) 2019
Gerez (10.1016/j.apenergy.2020.114977_b0185) 2019; 7
Cassettari (10.1016/j.apenergy.2020.114977_b0060) 2017; 190
Abbaspour (10.1016/j.apenergy.2020.114977_b0135) 2015
10.1016/j.apenergy.2020.114977_b0180
10.1016/j.apenergy.2020.114977_b0295
Yaseen (10.1016/j.apenergy.2020.114977_b0170) 2017
10.1016/j.apenergy.2020.114977_b0250
10.1016/j.apenergy.2020.114977_b0330
Yu (10.1016/j.apenergy.2020.114977_b0310) 2014; 91
10.1016/j.apenergy.2020.114977_b0210
10.1016/j.apenergy.2020.114977_b0015
Lu (10.1016/j.apenergy.2020.114977_b0045) 2015; 147
Gupta (10.1016/j.apenergy.2020.114977_b0160) 2017; 4
10.1016/j.apenergy.2020.114977_b0215
Wei (10.1016/j.apenergy.2020.114977_b0075) 2019; 240
González-Vidal (10.1016/j.apenergy.2020.114977_b0335) 2019; 196
Barak (10.1016/j.apenergy.2020.114977_b0150) 2016; 82
Gandomi (10.1016/j.apenergy.2020.114977_b0300) 2013; 18
Gunay (10.1016/j.apenergy.2020.114977_b0035) 2019; 97
10.1016/j.apenergy.2020.114977_b0190
Palensky (10.1016/j.apenergy.2020.114977_b0050) 2011; 7
Aghli (10.1016/j.apenergy.2020.114977_b0120) 2018
Tran (10.1016/j.apenergy.2020.114977_b0095) 2019; 116552
10.1016/j.apenergy.2020.114977_b0020
Benmouiza (10.1016/j.apenergy.2020.114977_b0345) 2013
Cano (10.1016/j.apenergy.2020.114977_b0005) 2013
10.1016/j.apenergy.2020.114977_b0220
Chen (10.1016/j.apenergy.2020.114977_b0235) 2012; 12
10.1016/j.apenergy.2020.114977_b0340
10.1016/j.apenergy.2020.114977_b0145
Kristjanpolleri (10.1016/j.apenergy.2020.114977_b0110) 2018
Chen (10.1016/j.apenergy.2020.114977_b0155) 2019; 5
10.1016/j.apenergy.2020.114977_b0225
Chou (10.1016/j.apenergy.2020.114977_b0080) 2018
Tian (10.1016/j.apenergy.2020.114977_b0070) 2019; 186
Ibrahim (10.1016/j.apenergy.2020.114977_b0275) 2017; 138
Wang (10.1016/j.apenergy.2020.114977_b0305) 20168
Jallal (10.1016/j.apenergy.2020.114977_b0315) 2019
Baghban (10.1016/j.apenergy.2020.114977_b0130) 2017
Zhong (10.1016/j.apenergy.2020.114977_b0065) 2020; 242
Dekhici (10.1016/j.apenergy.2020.114977_b0195) 2019; 42
Ratnaweera (10.1016/j.apenergy.2020.114977_b0265) 2004; 8
10.1016/j.apenergy.2020.114977_b0280
10.1016/j.apenergy.2020.114977_b0040
10.1016/j.apenergy.2020.114977_b0030
10.1016/j.apenergy.2020.114977_b0230
Najimi (10.1016/j.apenergy.2020.114977_b0270) 2019; 22
Ekici (10.1016/j.apenergy.2020.114977_b0140) 2011; 38
Wang (10.1016/j.apenergy.2020.114977_b0200) 2019; 80
References_xml – volume: 7
  start-page: 67874
  year: 2019
  end-page: 67888
  ident: b0185
  article-title: Distribution Network Reconfiguration Using Selective Firefly Algorithm and a Load Flow Analysis Criterion for Reducing the Search Space
  publication-title: IEEE Access
– reference: Aqil M, Kita I, Yano A, Nishiyama S. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool 2007;85:215–23. https://doi.org/10.1016/j.jenvman.2006.09.009.
– year: 2008
  ident: b0260
  article-title: Nature-inspired metaheuristic algorithms
– volume: 147
  start-page: 49
  year: 2015
  end-page: 58
  ident: b0045
  article-title: Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming
  publication-title: Appl Energy
– reference: Jagatheesan K, Member S, Anand B, Samanta S, Dey N, Amira S, et al. Design of a Proportional-Integral-Derivative Controller for an Automatic Generation Control of Multi-area Power Thermal Systems Using Firefly Algorithm n.d.:1–14. https://doi.org/10.1109/JAS.2017.7510436.K.
– volume: 186
  start-page: 230
  year: 2019
  end-page: 243
  ident: b0070
  article-title: Energy & Buildings Data driven parallel prediction of building energy consumption using generative adversarial nets
  publication-title: Energy Build
– reference: Long-term energy consumption & outdoor air temperature for 11 commercial buildings n.d.
– volume: 91
  start-page: 2507
  year: 2014
  end-page: 2513
  ident: b0310
  article-title: A novel wise step strategy for firefly algorithm
  publication-title: Int J Comp Mathem
– volume: 18
  start-page: 89
  year: 2013
  end-page: 98
  ident: b0300
  article-title: Commun Nonlinear Sci Numer Simulat Firefly algorithm with chaos
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 232
  year: 2020
  ident: b0115
  article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Constr Build Mater
– year: 2018
  ident: b0120
  article-title: Evaluation of new method for estimation of fracture parameters using conventional petrophysical logs and ANFIS in the carbonate heterogeneous reservoirs
  publication-title: J Pet Sci Eng
– volume: 138
  start-page: 413
  year: 2017
  end-page: 425
  ident: b0275
  article-title: A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm
  publication-title: Energy Convers Manag
– reference: Wei M, Bai B, Sung AH, Liu Q, Wang J, Cather ME. Predicting injection profiles using ANFIS 2007;177:4445–61. https://doi.org/10.1016/j.ins.2007.03.021.
– volume: 123
  start-page: 168
  year: 2014
  end-page: 178
  ident: b0085
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression : Investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl Energy
– volume: 49
  start-page: 423
  year: 2016
  end-page: 436
  ident: b0175
  article-title: An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training
  publication-title: Appl Soft Comput J
– reference: Sad N, Obradovi TD. Hybrid Firefly Model in Routing Heterogeneous Fleet of Vehicles in Logistics 2015;23. https://doi.org/10.1093/jigpal/jzv011.
– reference: [accessed December 22, 2019].
– volume: 23
  year: 1993
  ident: b0205
  article-title: ANFIS : Adap tive-Ne twork-Based Fuzzy Inference
  publication-title: System
– start-page: 1
  year: 2013
  end-page: 8
  ident: b0005
  article-title: G AFS
  publication-title: Context-Aware Energy Efficiency Smart Build
– reference: Ramallo-gonz AP, Gonz A, Terroso-s F. Data driven modeling for energy consumption prediction in smart buildings 2017:4562–9.
– volume: 240
  start-page: 276
  year: 2019
  end-page: 294
  ident: b0075
  article-title: Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks
  publication-title: Appl Energy
– year: 2018
  ident: b0080
  article-title: Forecasting Energy Consumption Time Series using Machine Learning
  publication-title: Energy
– volume: 42
  start-page: 20
  year: 2019
  end-page: 26
  ident: b0195
  article-title: Discretization of the Firefly Algorithm for Home Care Discrétisation de l ’ Algorithme de Lucioles pour le Soin à Domicile
  publication-title: Can J Electr Comput Eng
– year: 2019
  ident: b0315
  article-title: A novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackers
  publication-title: Renew Energy
– year: 2017
  ident: b0170
  article-title: Novel approach for streamflow forecasting using a hybrid ANFIS- FFA model
  publication-title: J Hydrol
– reference: Naji S, Shamshirband S, Basser H, Keivani A. Application of adaptive neuro-fuzzy methodology for estimating building energy consumption 2016;53:1520–8. https://doi.org/10.1016/j.rser.2015.09.062.
– volume: 7
  start-page: 381
  year: 2011
  end-page: 388
  ident: b0050
  article-title: Demand Side Management: Demand Response
  publication-title: Intell Energy Syst, Smart Loads
– reference: Yu S, Zhu S, Zhou X. An Improved Firefly Algorithm Based on Nonlinear Time-varying 2016;9:397–410.
– volume: 121
  start-page: 353
  year: 2015. n.d.
  end-page: 361
  ident: b0055
  article-title: Jelena Srebric. Improvement of building energy simulation accuracy with occupancy schedules derived from hourly building electricity consumption
  publication-title: Ashrae Trans
– volume: 190
  start-page: 841
  year: 2017
  end-page: 851
  ident: b0060
  article-title: Energy Resources Intelligent Management using on line real-time simulation : A decision support tool for sustainable manufacturing
  publication-title: Appl Energy
– volume: 82
  start-page: 92
  year: 2016
  end-page: 104
  ident: b0150
  article-title: Electrical Power and Energy Systems Forecasting energy consumption using ensemble ARIMA – ANFIS hybrid algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 40
  start-page: 394
  year: 2008
  end-page: 398
  ident: b0010
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
– volume: 116552
  year: 2019
  ident: b0095
  article-title: Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings
  publication-title: Energy
– volume: 144
  start-page: 261
  year: 2015
  end-page: 275
  ident: b0090
  article-title: Modeling and forecasting energy consumption for heterogeneous buildings using a physical – statistical approach
  publication-title: Appl Energy
– reference: Bezdek JC. FCM : the fuzzye c-means clustering algorithm 1 ; yk E Y ~ l 1984;10:191–203.
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: b0265
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans Evol Comput
– reference: Wang H, Wang W, Zhou X, Sun H, Zhao J, Yu X. Firefly algorithm with neighborhood attraction 2017;383:374–87. https://doi.org/10.1016/j.ins.2016.12.024.
– reference: Chiu SL. Fuzzy model identification based on cluster estimation abstract. J Intell Fuzzy Syst 1994;2:267–78.
– volume: 97
  start-page: 96
  year: 2019
  end-page: 109
  ident: b0035
  article-title: Automation in Construction Data analytics to improve building performance : A critical review
  publication-title: Autom Constr
– year: 2018
  ident: b0105
  article-title: Antlion Optimizer-ANFIS Load Frequency Control for Multi-Interconnected Plants Comprising Photovoltaic and Wind Turbine
  publication-title: ISA Trans
– reference: Cukla AR, Izquierdo RC, Borges FA, Perondi EA, Lorini FJ. Optimum Cascade Control Tuning of a Hydraulic Actuator Based on Firefly Metaheuristic Algorithm 2018;16:384–90.
– year: 2019
  ident: b0320
  article-title: A new Artificial Multi-Neural Approach to estimate the hourly global solar radiation in a semi-arid climate site
  publication-title: Theor Appl Climatol
– start-page: 1
  year: 2017
  end-page: 15
  ident: b0165
  article-title: H2-selective mixed matrix membranes modeling
  publication-title: Int J Hydrogen Energy
– reference: Abonyi Â, Andersen H, Nagy L, Szeifert F. Inverse fuzzy-process-model based direct adaptive control 1999;51:119–32.
– reference: [accessed March 1, 2020].
– reference: Smart grids and meters n.d.
– reference: Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Applications to Modeling and Control 1985:116–32.
– year: 1981
  ident: b0255
  article-title: Recognition with Fuzzy Objective Function Algorithms
  publication-title: Plenum Press. New York London
– reference: Electric Company Smart Meter Deployments: Foundation for a Smart Grid 2017.
– reference: Fotopoulou E, Zafeiropoulos A, Terroso-s F, Sim U, Gonz A, Tsiolis G, et al. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings n.d. https://doi.org/10.3390/s17092054.
– volume: 24
  start-page: 1279
  year: 1994
  end-page: 1284
  ident: b0240
  article-title: Approximate Clustering Via the Mountain Method
  publication-title: IEEE Trans Syst Man Cybern
– year: 2018
  ident: b0110
  article-title: A Stock Market Risk Forecasting model through integration of switching regime, ANFIS and GARCH techniques
  publication-title: Appl Soft Comput J
– volume: 12
  start-page: 759
  year: 2012
  end-page: 767
  ident: b0235
  article-title: Soft computing methods applied to train station parking in urban rail transit
  publication-title: Appl Soft Comput J
– reference: Moreno MV, Terroso-sáenz F, González-vidal A, Valdés-vela M, Skarmeta AF, Zamora MA, et al. Transactions on Industrial Informatics Applicability of Big Data Techniques to Smart Cities Deployments 2016;3203:1–10. https://doi.org/10.1109/TII.2016.2605581.
– volume: 196
  start-page: 71
  year: 2019
  end-page: 82
  ident: b0335
  article-title: A methodology for energy multivariate time series forecasting in smart buildings based on feature selection
  publication-title: Energy Build
– volume: 242
  start-page: 403
  year: 2020
  end-page: 414
  ident: b0065
  article-title: Vector field-based support vector regression for building energy consumption prediction
  publication-title: Appl Energy
– volume: 22
  start-page: 216
  year: 2019
  end-page: 226
  ident: b0270
  article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm
  publication-title: J Build Eng
– year: 2016;8.
  ident: b0305
  article-title: Firefly algorithm with random attraction Wenjun
  publication-title: Wang Shahryar Rahnamayan
– volume: 39
  start-page: 1837
  year: 2015
  end-page: 1852
  ident: b0125
  article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera
  publication-title: Appl Math Model
– year: 2017
  ident: b0025
  article-title: An open IoT platform for the management and analysis of energy data An Open IoT Platform for the Management and Analysis of Energy Data
  publication-title: Futur Gener Comput Syst
– volume: 4
  start-page: 60
  year: 2017
  end-page: 68
  ident: b0160
  article-title: Performance measurement of plate fi n heat exchanger by exploration : ANN, ANFIS, GA, and SA
  publication-title: J Comput Des Eng
– volume: 38
  start-page: 5352
  year: 2011
  end-page: 5358
  ident: b0140
  article-title: Expert Systems with Applications Prediction of building energy needs in early stage of design by using ANFIS
  publication-title: Expert Syst Appl
– year: 2017
  ident: b0130
  article-title: ANFIS Modeling of Rhamnolipid Breakthrough Curves on Activated Carbon
  publication-title: Chem Eng Res Des
– reference: Taylor P, Dunn JC. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters 2008:37–41.
– reference: Su H, Yong B, Du Q. Hyperspectral Band Selection Using Improved Firefly Algorithm 2016;13:68–72.
– volume: 80
  start-page: 107
  year: 2019
  end-page: 124
  ident: b0200
  article-title: A novel firefly algorithm based on gender difference and its convergence
  publication-title: Appl Soft Comput J
– year: 2013
  ident: b0345
  article-title: Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models
  publication-title: Energy Convers Manag
– reference: Aghniaey S, Lawrence TM, Mohammadpour J, Song W, Watson T, Boudreau MC. Optimizing thermal comfort considerations with electrical demand response program implementation 2018:1–13. https://doi.org/10.1177/0143624417752645.
– volume: 5
  start-page: 1509
  year: 2019
  end-page: 1524
  ident: b0155
  article-title: Electricity consumption prediction for buildings using multiple adaptive network-based fuzzy inference system models and gray relational analysis
  publication-title: Energy Rep
– volume: 126
  start-page: 94
  year: 2016
  end-page: 103
  ident: b0100
  article-title: Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique
  publication-title: Energy Build
– year: 2015
  ident: b0135
  article-title: A Novel Approach for Removing ECG Interferences from Surface EMG signals Using a Combined ANFIS and Wavelet
  publication-title: J Electromyogr Kinesiol
– volume: 23
  year: 1993
  ident: 10.1016/j.apenergy.2020.114977_b0205
  article-title: ANFIS : Adap tive-Ne twork-Based Fuzzy Inference
  publication-title: System
– volume: 7
  start-page: 381
  year: 2011
  ident: 10.1016/j.apenergy.2020.114977_b0050
  article-title: Demand Side Management: Demand Response
  publication-title: Intell Energy Syst, Smart Loads
– ident: 10.1016/j.apenergy.2020.114977_b0180
  doi: 10.1093/jigpal/jzv011
– volume: 40
  start-page: 394
  issue: 3
  year: 2008
  ident: 10.1016/j.apenergy.2020.114977_b0010
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2007.03.007
– volume: 186
  start-page: 230
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0070
  article-title: Energy & Buildings Data driven parallel prediction of building energy consumption using generative adversarial nets
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.01.034
– volume: 240
  start-page: 276
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0075
  article-title: Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.056
– ident: 10.1016/j.apenergy.2020.114977_b0015
– year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0315
  article-title: A novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackers
  publication-title: Renew Energy
– ident: 10.1016/j.apenergy.2020.114977_b0190
  doi: 10.1109/LGRS.2015.2497085
– volume: 97
  start-page: 96
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0035
  article-title: Automation in Construction Data analytics to improve building performance : A critical review
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.10.020
– volume: 5
  start-page: 1509
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0155
  article-title: Electricity consumption prediction for buildings using multiple adaptive network-based fuzzy inference system models and gray relational analysis
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2019.10.009
– ident: 10.1016/j.apenergy.2020.114977_b0145
  doi: 10.1016/j.rser.2015.09.062
– volume: 82
  start-page: 92
  year: 2016
  ident: 10.1016/j.apenergy.2020.114977_b0150
  article-title: Electrical Power and Energy Systems Forecasting energy consumption using ensemble ARIMA – ANFIS hybrid algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.03.012
– ident: 10.1016/j.apenergy.2020.114977_b0230
  doi: 10.1016/j.ins.2007.03.021
– volume: 190
  start-page: 841
  year: 2017
  ident: 10.1016/j.apenergy.2020.114977_b0060
  article-title: Energy Resources Intelligent Management using on line real-time simulation : A decision support tool for sustainable manufacturing
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.009
– ident: 10.1016/j.apenergy.2020.114977_b0285
  doi: 10.1109/TLA.2018.8327390
– volume: 91
  start-page: 2507
  issue: 12
  year: 2014
  ident: 10.1016/j.apenergy.2020.114977_b0310
  article-title: A novel wise step strategy for firefly algorithm
  publication-title: Int J Comp Mathem
  doi: 10.1080/00207160.2014.907405
– ident: 10.1016/j.apenergy.2020.114977_b0215
  doi: 10.1016/S0378-4754(99)00142-1
– volume: 123
  start-page: 168
  year: 2014
  ident: 10.1016/j.apenergy.2020.114977_b0085
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression : Investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.02.057
– year: 2017
  ident: 10.1016/j.apenergy.2020.114977_b0170
  article-title: Novel approach for streamflow forecasting using a hybrid ANFIS- FFA model
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.09.007
– ident: 10.1016/j.apenergy.2020.114977_b0325
  doi: 10.1109/TII.2016.2605581
– year: 2015
  ident: 10.1016/j.apenergy.2020.114977_b0135
  article-title: A Novel Approach for Removing ECG Interferences from Surface EMG signals Using a Combined ANFIS and Wavelet
  publication-title: J Electromyogr Kinesiol
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2020.114977_b0165
  article-title: H2-selective mixed matrix membranes modeling
  publication-title: Int J Hydrogen Energy
– volume: 80
  start-page: 107
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0200
  article-title: A novel firefly algorithm based on gender difference and its convergence
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.03.010
– ident: 10.1016/j.apenergy.2020.114977_b0295
  doi: 10.1016/j.ins.2016.12.024
– ident: 10.1016/j.apenergy.2020.114977_b0210
  doi: 10.1109/TSMC.1985.6313399
– year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0320
  article-title: A new Artificial Multi-Neural Approach to estimate the hourly global solar radiation in a semi-arid climate site
  publication-title: Theor Appl Climatol
– ident: 10.1016/j.apenergy.2020.114977_b0290
  doi: 10.14257/ijhit.2016.9.7.36
– ident: 10.1016/j.apenergy.2020.114977_b0030
  doi: 10.3390/s17092054
– ident: 10.1016/j.apenergy.2020.114977_b0040
  doi: 10.1177/0143624417752645
– year: 2017
  ident: 10.1016/j.apenergy.2020.114977_b0130
  article-title: ANFIS Modeling of Rhamnolipid Breakthrough Curves on Activated Carbon
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2017.08.007
– volume: 7
  start-page: 67874
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0185
  article-title: Distribution Network Reconfiguration Using Selective Firefly Algorithm and a Load Flow Analysis Criterion for Reducing the Search Space
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918480
– year: 2017
  ident: 10.1016/j.apenergy.2020.114977_b0025
  article-title: An open IoT platform for the management and analysis of energy data An Open IoT Platform for the Management and Analysis of Energy Data
  publication-title: Futur Gener Comput Syst
– volume: 39
  start-page: 1837
  year: 2015
  ident: 10.1016/j.apenergy.2020.114977_b0125
  article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2014.10.016
– year: 2013
  ident: 10.1016/j.apenergy.2020.114977_b0345
  article-title: Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.07.003
– volume: 242
  start-page: 403
  year: 2020
  ident: 10.1016/j.apenergy.2020.114977_b0065
  article-title: Vector field-based support vector regression for building energy consumption prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.078
– ident: 10.1016/j.apenergy.2020.114977_b0250
– ident: 10.1016/j.apenergy.2020.114977_b0220
  doi: 10.3233/IFS-1994-2306
– volume: 49
  start-page: 423
  year: 2016
  ident: 10.1016/j.apenergy.2020.114977_b0175
  article-title: An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2016.07.039
– ident: 10.1016/j.apenergy.2020.114977_b0330
– volume: 8
  start-page: 240
  year: 2004
  ident: 10.1016/j.apenergy.2020.114977_b0265
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826071
– year: 2018
  ident: 10.1016/j.apenergy.2020.114977_b0080
  article-title: Forecasting Energy Consumption Time Series using Machine Learning
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.144
– ident: 10.1016/j.apenergy.2020.114977_b0225
  doi: 10.1016/0098-3004(84)90020-7
– year: 2018
  ident: 10.1016/j.apenergy.2020.114977_b0110
  article-title: A Stock Market Risk Forecasting model through integration of switching regime, ANFIS and GARCH techniques
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.02.055
– ident: 10.1016/j.apenergy.2020.114977_b0340
– year: 2018
  ident: 10.1016/j.apenergy.2020.114977_b0105
  article-title: Antlion Optimizer-ANFIS Load Frequency Control for Multi-Interconnected Plants Comprising Photovoltaic and Wind Turbine
  publication-title: ISA Trans
– year: 1981
  ident: 10.1016/j.apenergy.2020.114977_b0255
  article-title: Recognition with Fuzzy Objective Function Algorithms
  publication-title: Plenum Press. New York London
– volume: 42
  start-page: 20
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0195
  article-title: Discretization of the Firefly Algorithm for Home Care Discrétisation de l ’ Algorithme de Lucioles pour le Soin à Domicile
  publication-title: Can J Electr Comput Eng
  doi: 10.1109/CJECE.2018.2883030
– volume: 147
  start-page: 49
  year: 2015
  ident: 10.1016/j.apenergy.2020.114977_b0045
  article-title: Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.060
– volume: 18
  start-page: 89
  year: 2013
  ident: 10.1016/j.apenergy.2020.114977_b0300
  article-title: Commun Nonlinear Sci Numer Simulat Firefly algorithm with chaos
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.06.009
– volume: 22
  start-page: 216
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0270
  article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2018.12.013
– volume: 38
  start-page: 5352
  year: 2011
  ident: 10.1016/j.apenergy.2020.114977_b0140
  article-title: Expert Systems with Applications Prediction of building energy needs in early stage of design by using ANFIS
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.021
– ident: 10.1016/j.apenergy.2020.114977_b0280
– volume: 12
  start-page: 759
  year: 2012
  ident: 10.1016/j.apenergy.2020.114977_b0235
  article-title: Soft computing methods applied to train station parking in urban rail transit
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2011.10.016
– volume: 138
  start-page: 413
  year: 2017
  ident: 10.1016/j.apenergy.2020.114977_b0275
  article-title: A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.02.006
– ident: 10.1016/j.apenergy.2020.114977_b0245
  doi: 10.1016/j.jenvman.2006.09.009
– volume: 121
  start-page: 353
  issue: 1
  year: 2015
  ident: 10.1016/j.apenergy.2020.114977_b0055
  article-title: Jelena Srebric. Improvement of building energy simulation accuracy with occupancy schedules derived from hourly building electricity consumption
  publication-title: Ashrae Trans
– year: 2018
  ident: 10.1016/j.apenergy.2020.114977_b0120
  article-title: Evaluation of new method for estimation of fracture parameters using conventional petrophysical logs and ANFIS in the carbonate heterogeneous reservoirs
  publication-title: J Pet Sci Eng
– volume: 144
  start-page: 261
  year: 2015
  ident: 10.1016/j.apenergy.2020.114977_b0090
  article-title: Modeling and forecasting energy consumption for heterogeneous buildings using a physical – statistical approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.019
– volume: 24
  start-page: 1279
  year: 1994
  ident: 10.1016/j.apenergy.2020.114977_b0240
  article-title: Approximate Clustering Via the Mountain Method
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.299710
– ident: 10.1016/j.apenergy.2020.114977_b0020
– start-page: 1
  year: 2013
  ident: 10.1016/j.apenergy.2020.114977_b0005
  article-title: G AFS
  publication-title: Context-Aware Energy Efficiency Smart Build
– volume: 232
  year: 2020
  ident: 10.1016/j.apenergy.2020.114977_b0115
  article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Constr Build Mater
– volume: 196
  start-page: 71
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0335
  article-title: A methodology for energy multivariate time series forecasting in smart buildings based on feature selection
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.05.021
– volume: 116552
  year: 2019
  ident: 10.1016/j.apenergy.2020.114977_b0095
  article-title: Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings
  publication-title: Energy
– year: 20168
  ident: 10.1016/j.apenergy.2020.114977_b0305
  article-title: Firefly algorithm with random attraction Wenjun
  publication-title: Wang Shahryar Rahnamayan
– volume: 126
  start-page: 94
  year: 2016
  ident: 10.1016/j.apenergy.2020.114977_b0100
  article-title: Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.05.028
– volume: 4
  start-page: 60
  year: 2017
  ident: 10.1016/j.apenergy.2020.114977_b0160
  article-title: Performance measurement of plate fi n heat exchanger by exploration : ANN, ANFIS, GA, and SA
  publication-title: J Comput Des Eng
– year: 2008
  ident: 10.1016/j.apenergy.2020.114977_b0260
SSID ssj0002120
Score 2.5431216
Snippet •A neuro-fuzzy inference system boosted with a recent optimizer is proposed.•A new layer denominated as non-working time adaptation was...
The accuracy of the prediction of buildings’ energy consumption is being tackled using existing artificial intelligence techniques. However, there is a lack of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114977
SubjectTerms algorithms
ANFIS
Autoregressive process
Building energy consumption
buildings
California
data collection
energy
fuzzy logic
gender differences
Gender-difference firefly algorithm
prediction
Spain
time series analysis
Time series forecasting
Title A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction
URI https://dx.doi.org/10.1016/j.apenergy.2020.114977
https://www.proquest.com/docview/2439422260
Volume 268
WOSCitedRecordID wos000537357800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IBhMjJuMhHipMpq78xhNnQCVgkQ39c1ybGfNaJOQttPWn8Ev5jh20ggNbTzwErWuT1r3fPG5-FwQeueGrjeU8HyH0TC1QB67VpQ4PpgqrlDlvl1St2Q5G4eTCZnNom-93q8mF-ZyEeY5ubqKyv_KahgDZqvU2X9gd3tTGIDXwHS4AtvheifGx4P5tUrDGtSlKq10s91e1zFXpp5sXbrZUtJLDNjivKiy9Xypow2zJXyuKh_XRRokZ6s6KJoZTRXUVKlTBXmduKl3m7JSZz0tf5uKtoZGE7RxOsptXzudvxRz5TMXg3iRtTFARb6tD-7thdxaZ5nQU2NYRtVKj-8_WLWUWueNVQPkrNhFJx_PWcKY9nQvM0NkfBqOan1j6azOJpcLBpRt192nnYAMSlXbGFRW68bdXzsiLo5YqRd3pO5tKHbyrjnjn3ylJ6fjMZ2OZtP35U9LdSJTJ_amLcs9tOeEfkT6aC_-NJp9buW7Y4p9Nr-xk3d-81f_TeX5Q_jXGs30MXpkTBEcawg9QT2Z76OHnQKV--hgtMuDhKlGEKyeom2MNcpwB2W4RRnuogy3KMOAKqxQhjXKcAdl2KAMrwusF4c7KMM7lD1Dpyej6fFHy7TxsLjr-WvQgUhiE54GJAHrADaGkNncY2DJu6HtBA5hAbxPAk-GjKUut3lk8yQUIhQEjKrIPUD9vMjlc4SF4_pDUFBJJAKPcDsCDU8GTHgpTLNJcoj85p-m3NS4V61WFrQJZrygDYeo4hDVHDpEH1q6Uld5uZUiahhJja6qdVAKYLyV9m3DeQqbuTqhY7ksNivqqDx10NiD4Ys7zHmJHuwenleov6428jW6zy_X2ap6Y2D7G6DFx6E
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+neuro-fuzzy+inference+system-based+algorithm+for+time+series+forecasting+applied+to+energy+consumption+prediction&rft.jtitle=Applied+energy&rft.au=Jallal%2C+Mohammed+Ali&rft.au=Gonz%C3%A1lez-Vidal%2C+Aurora&rft.au=Skarmeta%2C+Antonio+F&rft.au=Chabaa%2C+Samira&rft.date=2020-06-15&rft.issn=0306-2619&rft.volume=268+p.114977-&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114977&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon