Machine Learning Methods in Solving the Boolean Satisfiability Problem
This paper reviews the recent literature on solving the Boolean satisfiability problem (SAT), an archetypal N P -complete problem, with the aid of machine learning (ML) techniques. Over the last decade, the machine learning society advances rapidly and surpasses human performance on several tasks. T...
Uloženo v:
| Vydáno v: | Machine Intelligence Research Ročník 20; číslo 5; s. 640 - 655 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 2731-538X, 2153-182X, 2731-5398, 2153-1838 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper reviews the recent literature on solving the Boolean satisfiability problem (SAT), an archetypal
N
P
-complete problem, with the aid of machine learning (ML) techniques. Over the last decade, the machine learning society advances rapidly and surpasses human performance on several tasks. This trend also inspires a number of works that apply machine learning methods for SAT solving. In this survey, we examine the evolving ML SAT solvers from naive classifiers with handcrafted features to emerging end-to-end SAT solvers, as well as recent progress on combinations of existing conflict-driven clause learning (CDCL) and local search solvers with machine learning methods. Overall, solving SAT with machine learning is a promising yet challenging research topic. We conclude the limitations of current works and suggest possible future directions. The collected paper list is available at
https://github.com/Thinklab-SJTU/awesome-ml4co
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2731-538X 2153-182X 2731-5398 2153-1838 |
| DOI: | 10.1007/s11633-022-1396-2 |