impulseest: A Python package for non-parametric impulse response estimation with input–output data

This paper presents the impulseest Python package, used for estimating the impulse response of a system relying solely on input and output data. This package can provide estimates in a non-parametric fashion either with regularization techniques. For the regularized estimates, impulseest function us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SoftwareX Jg. 15; S. 100761
Hauptverfasser: Fiorio, Luan Vinícius, Remes, Chrystian Lenon, de Novaes, Yales Rômulo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2021
Elsevier
Schlagworte:
ISSN:2352-7110, 2352-7110
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the impulseest Python package, used for estimating the impulse response of a system relying solely on input and output data. This package can provide estimates in a non-parametric fashion either with regularization techniques. For the regularized estimates, impulseest function uses the Empirical Bayes method. On the other hand, the non-regularized case is solved through the least squares algorithm. This function is tested considering an experimental situation, several dynamic processes and also through Monte Carlo simulations. The obtained results are analyzed mainly in terms of the Mean Square Error (MSE), besides other quantities. Through those results, it is shown that the impulseest function with regularization using the proposed regularization kernels leads to low MSE for all tested cases.
ISSN:2352-7110
2352-7110
DOI:10.1016/j.softx.2021.100761