Least-squares solutions of generalized inverse eigenvalue problem over Hermitian–Hamiltonian matrices with a submatrix constraint
In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse eigenvalue problem: given X ∈ C n × m , Λ = diag ( λ 1 , λ 2 , … , λ m ) ∈ C m × m , find A ∗ , B ∗ ∈ C n × n , such that ‖ A X - B X Λ ‖ is minimi...
Uloženo v:
| Vydáno v: | Computational & applied mathematics Ročník 37; číslo 1; s. 593 - 603 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.03.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0101-8205, 2238-3603, 1807-0302 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse eigenvalue problem: given
X
∈
C
n
×
m
,
Λ
=
diag
(
λ
1
,
λ
2
,
…
,
λ
m
)
∈
C
m
×
m
, find
A
∗
,
B
∗
∈
C
n
×
n
, such that
‖
A
X
-
B
X
Λ
‖
is minimized, where
A
∗
,
B
∗
are Hermitian–Hamiltonian except for a special submatrix. For any initial constrained matrices, a solution pair
(
A
∗
,
B
∗
)
can be obtained in finite iteration steps by this iterative algorithm in the absence of roundoff errors. The least-norm solution can be obtained by choosing a special kind of initial matrix pencil. In addition, the unique optimal approximation solution to a given matrix pencil in the solution set of the above problem can also be obtained. A numerical example is given to show the efficiency of the proposed algorithm. |
|---|---|
| AbstractList | In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse eigenvalue problem: given X∈Cn×m, Λ=diag(λ1,λ2,…,λm)∈Cm×m, find A∗,B∗∈Cn×n, such that ‖AX-BXΛ‖ is minimized, where A∗,B∗ are Hermitian–Hamiltonian except for a special submatrix. For any initial constrained matrices, a solution pair (A∗,B∗) can be obtained in finite iteration steps by this iterative algorithm in the absence of roundoff errors. The least-norm solution can be obtained by choosing a special kind of initial matrix pencil. In addition, the unique optimal approximation solution to a given matrix pencil in the solution set of the above problem can also be obtained. A numerical example is given to show the efficiency of the proposed algorithm. In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse eigenvalue problem: given X ∈ C n × m , Λ = diag ( λ 1 , λ 2 , … , λ m ) ∈ C m × m , find A ∗ , B ∗ ∈ C n × n , such that ‖ A X - B X Λ ‖ is minimized, where A ∗ , B ∗ are Hermitian–Hamiltonian except for a special submatrix. For any initial constrained matrices, a solution pair ( A ∗ , B ∗ ) can be obtained in finite iteration steps by this iterative algorithm in the absence of roundoff errors. The least-norm solution can be obtained by choosing a special kind of initial matrix pencil. In addition, the unique optimal approximation solution to a given matrix pencil in the solution set of the above problem can also be obtained. A numerical example is given to show the efficiency of the proposed algorithm. |
| Author | Chen, Jianlong Cai, Jing |
| Author_xml | – sequence: 1 givenname: Jing surname: Cai fullname: Cai, Jing email: caijing@zjhu.edu.cn organization: School of Science, Huzhou University, Department of Mathematics, Southeast University – sequence: 2 givenname: Jianlong surname: Chen fullname: Chen, Jianlong organization: Department of Mathematics, Southeast University |
| BookMark | eNp9UMtKBDEQDKLg-vgAbwHPo53HvI4i6goLXvQcMjM9GplJNMn4Ogl-gn_ol5h1BUHQvjTdXVVd1BZZt84iIXsMDhhAeRgkCCYzYEUGohCZWCMzVkGZJuDrZAYMWFZxyDfJbgi3kEoCMF7MyNsCdYhZuJ-0x0CDG6ZonA3U9fQaLXo9mBfsqLEP6ANSNGn7oIcJ6Z13zYAjdelC5-hHE422H6_vcz2aITqbJjrq6E2blB9NvKGahqn5Wj3RNn2JXhsbd8hGr4eAu999m1ydnlwez7PFxdn58dEia4WUMesEE5XUDRc9h1rnedHxgjdNLjmHruyquqv7CipsoRZ5I2XZFX2dbqyQvei12Cb7K93k_H7CENWtm7xNLxVPMZYgRA0JVa5QrXcheOxVa6JehrJ0OygGahm6WoWukrpahq5EYrJfzDtvRu2f_-XwFSckrL1G_-Ppb9InL1SZDg |
| CitedBy_id | crossref_primary_10_1002_mma_7025 crossref_primary_10_1016_j_camwa_2018_08_034 crossref_primary_10_1016_j_cam_2018_07_025 crossref_primary_10_1007_s40314_020_01380_8 crossref_primary_10_1002_asjc_1965 crossref_primary_10_1016_j_camwa_2018_06_038 |
| Cites_doi | 10.1016/j.amc.2007.05.035 10.1080/03081087.2014.922969 10.1007/BFb0039443 10.1007/s11741-004-0055-x 10.1016/j.cam.2008.05.015 10.1016/0024-3795(88)90223-6 10.1093/imamci/2.4.335 10.1137/140972494 |
| ContentType | Journal Article |
| Copyright | SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2016 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2016 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s40314-016-0363-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1807-0302 |
| EndPage | 603 |
| ExternalDocumentID | 10_1007_s40314_016_0363_3 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Anhui Province grantid: No.1508085MA12 funderid: http://dx.doi.org/10.13039/501100003995 – fundername: National Natural Science Foundation of China grantid: No.61473332 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -EM .4S .DC 06D 0R~ 203 29F 2WC 30V 4.4 406 5GY 69Q 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXHO ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACIPV ACIWK ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEGXH AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH APOWU ARCSS ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BAPOH BGNMA C1A CS3 CSCUP DNIVK DPUIP DU5 E3Z EBLON EBS EDO EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV KQ8 KWQ LLZTM M4Y M~E NPVJJ NQJWS NU0 O9- O93 O9G O9J OK1 P2P PT4 RLLFE RNS ROL RSC RSV SCD SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XSB Z7R Z83 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION OVT JQ2 |
| ID | FETCH-LOGICAL-c344t-d31384ab23f209a556d262bb54220d7d89d9f808ec0935b447d6f9220164f3fa3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426080800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0101-8205 2238-3603 |
| IngestDate | Thu Sep 25 00:50:30 EDT 2025 Tue Nov 18 21:29:47 EST 2025 Sat Nov 29 01:53:04 EST 2025 Fri Feb 21 02:27:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Hermitian–Hamiltonian matrix 65J22 Optimal approximation Submatrix constraint Generalized inverse eigenvalue problem 15A29 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-d31384ab23f209a556d262bb54220d7d89d9f808ec0935b447d6f9220164f3fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2007703390 |
| PQPubID | 2044245 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2007703390 crossref_citationtrail_10_1007_s40314_016_0363_3 crossref_primary_10_1007_s40314_016_0363_3 springer_journals_10_1007_s40314_016_0363_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-01 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Computational & applied mathematics |
| PublicationTitleAbbrev | Comp. Appl. Math |
| PublicationYear | 2018 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | AntoniouALuWSPractical optimization: algorithm and engineering applications2007New YorkSpringer1128.90001 DaiHBaiZZWeiYOn the solvability condition and numerical algorithm for the parameterized generalized inverse eigenvalue problemSIAM J Matrix Anal Appl201536707726335576910.1137/1409724941317.65101 MoghaddamMRMirzaeiHGhanbariKOn the generalized inverse eigenvalue problem of constructing symmetric pentadiagonal matrices from three mixed eigendataLinear Multilinear Algebra201563611541166329196210.1080/03081087.2014.9229691315.15009 PritchardAJSalamonDThe linear quadratic control problem for retarded systems with delays in control and observationIMA J Math Control Inf1985233536210.1093/imamci/2.4.3350646.34078 JamshidiMAn overview on the solutions of the algebra matrix riccati equation and related problemsLarge Scale Syst Theory Appl198011671926179860453.93025 GhanbariKMingarelliAGeneralized inverse eigenvalue problem for symmetric matricesInt J Appl Math20004219920919343341172.15300 YuanYXDaiHA generalized inverse eigenvalue problem in structural dynamic model updatingJ Comput Appl Math200922614249250187810.1016/j.cam.2008.05.0151175.65049 MoRHLiWThe inverse eigenvalue problem of hermitian and generalized skew-Hamiltonian matrices with a submatrix constraint and its approximationActa Mathematica Scientia201131A369170128169871240.65129 YuanYXGeneralized inverse eigenvalue problems for symmetric arrow-head matricesInt J Comput Math Sci2010462682712765319 LiuZYTanYXTianZLGeneralized inverse eigenvalue problem for centrohermitian matricesJ Shanghai Univ200484448454210971610.1007/s11741-004-0055-x WeiPZhangZZXieDXGeneralized inverse eigenvalue problem for Hermitian generalized Hamiltonian matricesChin J Eng Math201027582082628100481240.65131 ZhouKMDoyleJGloverKRobust and optimal control1995Upper Saddle RiverPrentice Hall0999.49500 Mehrmann VL (1991) The autonomous linear quadratic control problem: theory and numerical solution. J Shanghai Univ. Springer, Heidelberg YuanYXOn the two class of best approximation problemsMath Numer Sinica2001234294361881817 GhanbariKA survey on inverse and generalized inverse eigenvalue problems of jacobi matricesAppl Math Comput20081952355363238121610.1016/j.amc.2007.05.0351156.65036 HighamNJComputing a nearest symmetric positive semidefinite matrixLinear Algebra Appl19881310311894399710.1016/0024-3795(88)90223-60649.65026 JiangZLuQOn optimal approximation of a matrix under a spectral restrictionMath Numer Sine1986847528640300592.65023 GaoYQWeiPZhangZZXieDXGeneralized inverse eigenvalue problem for reflexive and anti-reflexive matrices.Numer Math J Chin Univ201234321422230892411289.65088 YQ Gao (363_CR3) 2012; 34 MR Moghaddam (363_CR12) 2015; 63 RH Mo (363_CR11) 2011; 31A YX Yuan (363_CR16) 2010; 4 363_CR10 H Dai (363_CR2) 2015; 36 K Ghanbari (363_CR4) 2008; 195 M Jamshidi (363_CR7) 1980; 1 ZY Liu (363_CR9) 2004; 8 K Ghanbari (363_CR5) 2000; 4 NJ Higham (363_CR6) 1988; 13 P Wei (363_CR14) 2010; 27 YX Yuan (363_CR17) 2009; 226 AJ Pritchard (363_CR13) 1985; 2 YX Yuan (363_CR15) 2001; 23 KM Zhou (363_CR18) 1995 A Antoniou (363_CR1) 2007 Z Jiang (363_CR8) 1986; 8 |
| References_xml | – reference: GhanbariKMingarelliAGeneralized inverse eigenvalue problem for symmetric matricesInt J Appl Math20004219920919343341172.15300 – reference: MoRHLiWThe inverse eigenvalue problem of hermitian and generalized skew-Hamiltonian matrices with a submatrix constraint and its approximationActa Mathematica Scientia201131A369170128169871240.65129 – reference: MoghaddamMRMirzaeiHGhanbariKOn the generalized inverse eigenvalue problem of constructing symmetric pentadiagonal matrices from three mixed eigendataLinear Multilinear Algebra201563611541166329196210.1080/03081087.2014.9229691315.15009 – reference: JamshidiMAn overview on the solutions of the algebra matrix riccati equation and related problemsLarge Scale Syst Theory Appl198011671926179860453.93025 – reference: WeiPZhangZZXieDXGeneralized inverse eigenvalue problem for Hermitian generalized Hamiltonian matricesChin J Eng Math201027582082628100481240.65131 – reference: GhanbariKA survey on inverse and generalized inverse eigenvalue problems of jacobi matricesAppl Math Comput20081952355363238121610.1016/j.amc.2007.05.0351156.65036 – reference: GaoYQWeiPZhangZZXieDXGeneralized inverse eigenvalue problem for reflexive and anti-reflexive matrices.Numer Math J Chin Univ201234321422230892411289.65088 – reference: ZhouKMDoyleJGloverKRobust and optimal control1995Upper Saddle RiverPrentice Hall0999.49500 – reference: YuanYXDaiHA generalized inverse eigenvalue problem in structural dynamic model updatingJ Comput Appl Math200922614249250187810.1016/j.cam.2008.05.0151175.65049 – reference: AntoniouALuWSPractical optimization: algorithm and engineering applications2007New YorkSpringer1128.90001 – reference: Mehrmann VL (1991) The autonomous linear quadratic control problem: theory and numerical solution. J Shanghai Univ. Springer, Heidelberg – reference: LiuZYTanYXTianZLGeneralized inverse eigenvalue problem for centrohermitian matricesJ Shanghai Univ200484448454210971610.1007/s11741-004-0055-x – reference: YuanYXOn the two class of best approximation problemsMath Numer Sinica2001234294361881817 – reference: DaiHBaiZZWeiYOn the solvability condition and numerical algorithm for the parameterized generalized inverse eigenvalue problemSIAM J Matrix Anal Appl201536707726335576910.1137/1409724941317.65101 – reference: YuanYXGeneralized inverse eigenvalue problems for symmetric arrow-head matricesInt J Comput Math Sci2010462682712765319 – reference: JiangZLuQOn optimal approximation of a matrix under a spectral restrictionMath Numer Sine1986847528640300592.65023 – reference: HighamNJComputing a nearest symmetric positive semidefinite matrixLinear Algebra Appl19881310311894399710.1016/0024-3795(88)90223-60649.65026 – reference: PritchardAJSalamonDThe linear quadratic control problem for retarded systems with delays in control and observationIMA J Math Control Inf1985233536210.1093/imamci/2.4.3350646.34078 – volume-title: Robust and optimal control year: 1995 ident: 363_CR18 – volume: 195 start-page: 355 issue: 2 year: 2008 ident: 363_CR4 publication-title: Appl Math Comput doi: 10.1016/j.amc.2007.05.035 – volume: 1 start-page: 167 year: 1980 ident: 363_CR7 publication-title: Large Scale Syst Theory Appl – volume: 63 start-page: 1154 issue: 6 year: 2015 ident: 363_CR12 publication-title: Linear Multilinear Algebra doi: 10.1080/03081087.2014.922969 – ident: 363_CR10 doi: 10.1007/BFb0039443 – volume: 34 start-page: 214 issue: 3 year: 2012 ident: 363_CR3 publication-title: Numer Math J Chin Univ – volume: 8 start-page: 47 year: 1986 ident: 363_CR8 publication-title: Math Numer Sine – volume: 8 start-page: 448 issue: 4 year: 2004 ident: 363_CR9 publication-title: J Shanghai Univ doi: 10.1007/s11741-004-0055-x – volume: 23 start-page: 429 year: 2001 ident: 363_CR15 publication-title: Math Numer Sinica – volume: 226 start-page: 42 issue: 1 year: 2009 ident: 363_CR17 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2008.05.015 – volume: 27 start-page: 820 issue: 5 year: 2010 ident: 363_CR14 publication-title: Chin J Eng Math – volume: 4 start-page: 268 issue: 6 year: 2010 ident: 363_CR16 publication-title: Int J Comput Math Sci – volume: 13 start-page: 103 year: 1988 ident: 363_CR6 publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(88)90223-6 – volume: 2 start-page: 335 year: 1985 ident: 363_CR13 publication-title: IMA J Math Control Inf doi: 10.1093/imamci/2.4.335 – volume: 36 start-page: 707 year: 2015 ident: 363_CR2 publication-title: SIAM J Matrix Anal Appl doi: 10.1137/140972494 – volume: 4 start-page: 199 issue: 2 year: 2000 ident: 363_CR5 publication-title: Int J Appl Math – volume-title: Practical optimization: algorithm and engineering applications year: 2007 ident: 363_CR1 – volume: 31A start-page: 691 issue: 3 year: 2011 ident: 363_CR11 publication-title: Acta Mathematica Scientia |
| SSID | ssj0000400126 ssj0037144 |
| Score | 2.1369588 |
| Snippet | In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 593 |
| SubjectTerms | Algorithms Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Eigenvalues Generalized inverse Iterative algorithms Iterative methods Least squares Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Matrix Roundoff error |
| Title | Least-squares solutions of generalized inverse eigenvalue problem over Hermitian–Hamiltonian matrices with a submatrix constraint |
| URI | https://link.springer.com/article/10.1007/s40314-016-0363-3 https://www.proquest.com/docview/2007703390 |
| Volume | 37 |
| WOSCitedRecordID | wos000426080800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1807-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037144 issn: 0101-8205 databaseCode: RSV dateStart: 20130401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDJ2VhN8k-chSx9FBF8EFvy-4mkYJutduKeBL8Cf5Df4mZfRVFBT3u5kFIJvPIzHwDsB85gWdrzSzqKG5xIaUlqBtYGoVrzFDq54nCff_sLBgMxHmZx51V0e6VSzLn1HWyG0ekdWP6GgsYnY9sHhZcBJtBE_3iun5YQap0UKco2DEi0hUA38ZuNuLOrVyb3035WTjNNM4vTtJc9nSb_1r1KqyUqiY5KmhjDeZU2oJmqXaS8lJnLVg-raFbs3V47WM1Hyt7mGJmEqlJk4w0uSkwqofPZvwwxYAORRTCeSJkuCJlcRqCUaGkh1E2yD7eX956-IpilEzzRe7ymgBmZnwBJhHJjEDGX08kQVUVK1ZMNuCqe3J53LPKSg1WwjifWJI5LOBRTJmmtohc15PUo3Hsckpt6ctASKEDO1AJ-l1jzn3paWHajLGmmY7YJjTSUaq2gEjlxNSObaodwR1thKWZUbnKTzxjywnZBrs6ojApYcxxbbdhDcCcb3mIoWu45SFrw0E95L7A8Pitc6c697C8zhnW6vQNa2TCbsNhdc6z5h8n2_5T7x1YMjsSFBFuHWhMxlO1C4vJ42SYjfdyKv8AI3j2EA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurB-sT6zMGTsrCbZB85ilgqtkWwSm_L7iaRgrbqVhFPgj_Bf-gvMbMvUVTQ424ehGQyj8zMNwC7kRN4ttbMoo7iFhdSWoK6gaVRuMYMpX6WKNz2u92g3xenRR53Wka7ly7JjFNXyW4ckdaN6WssYHQ-skmY4lhlB030s4vqYQWp0kGdImfHiEiXA3wbu9mIO7d0bX435Wfh9KFxfnGSZrKnWf_XqhdgvlA1yUFOG4swoYZLUC_UTlJc6nQJ5joVdGu6DC9trOZjpbf3mJlEKtIkI00uc4zqwZMZPxhiQIciCuE8ETJckaI4DcGoUNLCKBtkH2_Pry18RTFKpvki11lNADMzvgCTiKRGIOOvR5KgqooVK8YrcN486h22rKJSg5UwzseWZA4LeBRTpqktItf1JPVoHLucUlv6MhBS6MAOVIJ-15hzX3pamDZjrGmmI7YKteFoqNaASOXE1I5tqh3BHW2EpZlRucpPPGPLCdkAuzyiMClgzHFtV2EFwJxteYiha7jlIWvAXjXkJsfw-K3zZnnuYXGdU6zV6RvWyITdgP3ynD-af5xs_U-9d2Cm1eu0w_Zx92QDZs3uBHm02ybUxnf3agumk4fxIL3bzij-HbM6-PQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqCo4FEpBLE8feqKKSGzn4SOiXS1iu0J9IG5REttoJQgLCQhxQuIn8A_5JczkhVpBparHxPYosceeGc_MNwCfEi8KXGuFwz0jHam0dhT3I8eScE0FSf0qUXgYjkbR8bE6bOqcFm20e-uSrHMaCKUpL3cm2u50iW-SUNfRDEZrmByR4g3MSDRkKKbr-4-j7pKFONQj_aI-mgmdrgb7RhsaRZ_fujlfIvm7oHrWPv9wmFZyqD__33-wAO8bFZTt1jzzAaZMvgjzjTrKms1eLMLctw7StfgI90Oq8uMUF1eUscQ6lmXnlp3U2NXjWxw_zinQwzBDMJ8EJW5YU7SGUbQoG1D0DR0rj3cPA7pdQeUTn9hZVSsAKdPNMEtYgYKaXt2wjFRYqmRRLsGv_tefewOnqeDgZELK0tHCE5FMUi4sd1Xi-4HmAU9TX3Lu6lBHSisbuZHJyB-bShnqwCpsQyPOCpuIZZjOz3OzAkwbL-Vu6nLrKelZFKJI0fgmzAK08ZTugdsuV5w18Ob0badxB8xcTXlMIW005bHowXY3ZFJje_yt83rLA3GzzQuq4RnikSmU24PP7Zo_N79KbPWfem_Bu8Mv_Xi4PzpYg1mcnKgOgluH6fLyymzA2-y6HBeXmxXzPwGDwQHn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Least-squares+solutions+of+generalized+inverse+eigenvalue+problem+over+Hermitian%E2%80%93Hamiltonian+matrices+with+a+submatrix+constraint&rft.jtitle=Computational+and+Applied+Mathematics&rft.au=Cai%2C+Jing&rft.au=Chen%2C+Jianlong&rft.date=2018-03-01&rft.pub=Springer+International+Publishing&rft.issn=0101-8205&rft.eissn=1807-0302&rft.volume=37&rft.issue=1&rft.spage=593&rft.epage=603&rft_id=info:doi/10.1007%2Fs40314-016-0363-3&rft.externalDocID=10_1007_s40314_016_0363_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0101-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0101-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0101-8205&client=summon |